Friday, August 31, 2007

Rumah bersumberkan tenaga gas hidrogen

Oleh Laupa Junus (Wartawan Utusan)

Satu masa nanti, mungkin rumah kediaman akan menggunakan gas hidrogen sebagai sumber tenaga. Kecanggihan teknologi sudah membuktikannya. Persoalan yang tinggal ialah sama ada anda mampu memilikinya ataupun tidak.

Kini Universiti Kebangsaan Malaysia (UKM) akan memperkenalkan konsep rumah mesra teknologi itu dan menjadi kenyataan dalam beberapa bulan dari sekarang.

Ketua penyelidik projek tersebut, Prof. Dr. Kamaruzzaman Sopian berkata, rumah tersebut yang dikenali sebagai Eco-Wisma Hidrogen Suria menggunakan sistem mesra alam hidrogen sebagai pembawa tenaga.

``Dengan menggunakan sistem mesra alam gas hidrogen sebagai pembawa tenaga, air akan dipecahkan kepada hidrogen dan oksigen dengan menggunakan tenaga elektrik yang dihasilkan daripada sumber-sumber tenaga yang boleh diperbaharui seperti tenaga suria, hidro, biojisim, angin dan hidro,'' katanya.

Dengan penggunaan hidrogen, bahan api fosil seperti petroleum dan gas asli boleh disimpan atau digunakan sebagai bahan mentah untuk menghasilkan pelincir, gentian dan bahan sintetik, racun serangga dan ubat-ubatan.

Menurut Kamaruzzaman, rasional penggunaan gas hidrogen sebagai pengganti sumber tenaga amat banyak.

Beliau memberitahu, pada masa ini hampir 80 peratus daripada sumber-sumber tenaga adalah daripada tenaga fosil seperti petroleum, arang batu dan gas asli.

Terdapat juga sumber tenaga daripada nuklear yang boleh digunakan dalam proses penjanaan elektrik. Selain itu, terdapat sumber tenaga yang boleh diperbaharui termasuklah tenaga suria, tenaga biojisim, tenaga angin, ombak, dan geoterma.

Bagaimanapun manusia tidak boleh terlalu bergantung kepada sumber-sumber tenaga tersebut atas pelbagai sebab.

Antaranya mendatangkan kesan sampingan yang negatif dan kedua, simpanannya semakin berkurangan.

``Pada masa ini hanya lapan negara yang mempunyai hampir 80 peratus simpanan petroleum dunia, enam negara mempunyai 70 peratus simpanan gas asli dunia dan lapan negara yang mempunyai hampir 90 peratus daripada simpanan arang batu dunia.

``Ini menunjukkan bahawa bekalan tenaga fosil dunia hanya berada di kawasan yang terhad dan ini memerlukan kestabilan politik di kawasan tersebut untuk memastikan bekalan tidak terputus,'' tegas beliau.

Kedua, tenaga fosil ini mendatangkan pencemaran yang amat hebat. Ini disebabkan proses pembakaran yang mesti dilakukan. Pembakaran bahan api fosil menghasilkan CO2 (karbon dioksida), SO2 (sulfur dioksida) dan NOx (nitrogen oksida).

Ini merupakan bahan pencemar. Salah satu kesan adalah kesan rumah kaca, iaitu apabila CO2 menutupi ruang atas atmosfera dan menjadi seperti kaca yang memanaskan bumi pada tahap yang membimbangkan.

Ini akan mengakibatkan malapetaka sejagat yang hebat dan jika tidak dibendung akan mengakibatkan krisis alam sekitar yang akan memberikan kesan negatif kepada generasi yang akan datang.

Satu lagi, adalah hujan asid yang terjadi akibat tindak balas gas hasil pembakaran dengan air hujan.

``Oleh kerana masalah ini maka kita perlukan satu sumber tenaga mesra alam dan mapan.

``Tenaga fosil akan habis pada masa yang dekat ini. Petroleum contohnya pada kadar pengeluaran sekarang akan kehabisan dalam masa antara 20 dan 30 tahun lagi. Gas asli dalam masa 50 tahun sahaja lagi. Ini akan mendatangkan krisis tenaga yang hebat,'' kata Kamaruzzaman.

Beliau yang juga profesor di Jabatan Kejuruteraan Mekanik dan Bahan, UKM berkata, penggunaan gas hidrogen merupakan satu alternatif yang akan mengelakkan atau mengurangkan masalah tersebut.

Lebih menarik, gas hidrogen boleh didapati dengan mudah iaitu menerusi pemecahan molekul air. Selain itu, hidrogen merupakan gas yang ringan dan selamat digunakan berbanding gas asli, gas asli cecair dan juga etanol.

Katanya, hidrogen juga boleh disimpan dalam bentuk gas serta boleh dihantar pada jarak yang jauh menggunakan paip gas. Justeru, beliau dan beberapa penyelidik UKM lain telah merangka satu sistem yang boleh menghasilkan gas hidrogen daripada tenaga suria.

Tenaga suria ditukarkan kepada kuasa elektrik menggunakan panel fotovolta. Kuasa elektrik tersebut kemudiannya digunakan untuk memecahkan molekul air kepada hidrogen dan oksigen.

``Peranti yang digunakan untuk menghasilkan hidrogen ini dikenali sebagai elektroliser. Dan hidrogen yang dihasilkan akan disimpan dalam sebuah tangki storan,'' kata Kamaruzzaman.

Gas hidrogen yang disimpan itu akan digunakan untuk dapur masak, sebagai pemanas untuk menjalankan sistem penyamanan udara.

Sistem penyamanan udara ini beroperasi menggunakan sistem kitaran penyerap. Sistem ini berbeza dengan sistem penyamanan udara lazim yang menggunakan sistem mampatan wap.

Hidrogen juga digunakan untuk menghasilkan elektrik dengan peranti yang dikenali sebagai sel bahan api. Sel bahan api adalah peranti elektrokimia yang menggunakan hidrogen dan oksigen sebagai bahan mentah.

Kedua-dua aliran gas ini akan melalui lapisan elektrod dan elektrolit. Hidrogen akan melalui elektrod anod manakala oksigen pada elektrod katod dan akan menghasilkan arus elektrik.

Jika tangki hidrogen penuh dan peralatan lain tidak digunakan maka kuasa elektrik akan dihantar ke grid.

Sebuah meter akan dipasang untuk menentukan jumlah tenaga elektrik yang dihantar ke grid.

Kuasa elektrik ini akan dihantar ke grid Universiti Kebangsaan Malaysia dan dapat menjimatkan penggunaan tenaga di universiti tersebut.

Justeru, kata Kamaruzzaman bagi memanfaatkan gas hidrogen tersebut, sistem rumah Eco-Wisma Hidrogen Suria iaitu kediaman masa depan mesra alam telah direka bentuk untuk menempatkan sistem penjanaan hidrogen daripada tenaga suria.

Reka bentuk rumah tersebut dibina dengan kerjasama Mohd. Hafiz Hasim dan Shah Jafar dari firma Arkitek Urbanisma Sdn. Bhd. yang telah mereka bentuk sistem rumah untuk membuktikan kecekapan dan kemampuan gas tersebut sebagai sumber tenaga.

``Eco-Wisma ini menggabungkan beberapa ciri reka bentuk seni bina penggunaan tenaga sifar seperti pencahayaan siang, pergerakan udara pasif tanpa menggunakan kipas dan penahan sinaran,'' katanya.

Rumah tersebut akan menggunakan hidrogen untuk menjalankan sepenuhnya sistem memasak, hawa dingin dan pencahayaan.

Elektrik daripada sel bahan api akan digunakan untuk menjalankan sistem kitar air hujan dan peranti-peranti elektrik yang lain seperti lampu, kipas dan komputer.

Kombinasi sistem reka bentuk seni bina ini dan sistem penjanaan hidrogen ini dapat membuka jalan kepada sistem mesra alam dan mapan untuk kediaman masa depan.

Sistem ini akan beroperasi sepenuhnya pada bulan September ini.

Teknologi bahan api logam lawan hidrogen

Oleh AZMAN ANUAR

(Wartawan Utusan)
LOGAM zink, magnesium dan aluminium yang selama ini dianggap bukan pengalir terbaik, sebenarnya mampu memberi sumber tenaga baru kepada kehidupan manusia pada masa akan datang.

Revolusi industri memberi kepada manusia warisan pencemaran bahan api daripada arang batu hingga penggunaan gas dan minyak. Memang sejak berdekad lamanya, selepas arang batu - minyak dan gas adalah sumber tenaga dan bahan api kepada manusia.

Namun sampai bila manusia perlu bergantung pada bahan api yang semakin berkurangan itu?

Ada pihak yang berpendapat sumber tenaga masa depan ialah hidrogen. Ini kerana ia boleh dihasilkan dengan mudah dan dikatakan sebagai pilihan bagi mengganti tempat minyak, gas dan arang batu.

Tetapi syarikat penyelidikan dan pembangunan (R&D) yang bertapak di Cyberjaya, InventQjaya Sdn. Bhd. telah mereka cipta sumber bahan api baru yang lebih selamat daripada hidrogen.

``Kami berfikiran berlainan. Bahan api untuk masa depan ialah magnesium, zink dan aluminium,'' kata Presiden dan Ketua Pegawai Eksekutif InventQjaya, Dr. Sadeg Mustafa Faris kepada peserta seminar Teknologi Masa Depan di Persidangan dan Pameran Elektrik Asia Barat, Dubai, 15 Februari lalu.

Berbanding dengan tenaga hidrogen, ia mudah terbakar dan kosnya amat tinggi untuk dihasilkan. Ia perlu disimpan pada tempat yang selamat. Hambatan ini menjadi isu apabila orang terlepas perhatian ketika melabur dalam teknologi tenaga hidrogen.

Untuk mengatasi masalah ini InventQjaya mampu mengubah cabaran ini dengan menggunakan teknologi bahan api logam berasaskan aluminium, zink dan magnesium.

Satu lagi masalah ialah kos. Komponen bahan api logam hanya menggunakan oksigen dari udara untuk hidrosidakan gelung dawai. Komponen ini juga menggunakan bahan yang murah. Dengan ini kita boleh bayangkan generator ini boleh diagih dan digunakan oleh semua orang.

Sadeg menjangkakan sumber tenaga logam ini akan diterima oleh pengguna apabila ia dapat dikeluarkan secara komersial dalam tempoh 10-12 tahun lagi. Beliau yakin generasi akan datang akan sedar keperluan sumber tenaga yang tidak berbahaya dan selamat.

Apabila penggunaan bahan api yang digunakan masa kini mencemarkan alam sekitar dan mempunyai risiko jika berlaku kebocoran, maka manusia `berperang' untuk mencari bahan api yang lebih selamat.

Inilah penyelesaian tenaga melalui inovatif InventQjaya yang melakukan revolusi bahan api logam.

Sumber tenaga biasa bergantung pada bahan api gas, minyak, arang batu dan lain. Lazimnya proses mendapatkan tenaga daripada bahan api normal adalah melalui tenaga air, tenaga turbin, tenaga mekanik dan kemudian baru kita mendapat tenaga elektrik dan tenaga cahaya. Jadi setiap hari semakin banyak penggunaan, kian banyak manusia kehilangan sumber tenaga.

Untuk itu, InventQjaya menerokai teknologi bahan api baru yang boleh menjimatkan beratus bilion ringgit. Bayangkan betapa banyak pembaziran dilakukan untuk mendapat tenaga daripada gas dan minyak.

Manusia tidak perlu lagi menghasilkan tenaga menggunakan banyak perantara yang menyebabkan banyak tenaga hilang ketika melalui proses penghantaran tenaga. Cara mudah ialah melalui teknologi InventQjaya yang dapat terus menghasilkan tenaga tanpa perantaraan.

Keistimewaan sumber tenaga baru daripada logam ini ialah ia tidak menjadi punca pencemaran sebaliknya lebih mesra alam dan pelbagai guna. Malah aluminium terbuang juga boleh digunakan untuk menghasilkan tenaga.

Potensi bahan api logam sebagai bahan api baru dibuktikan oleh Sadeg melalui uji kaji mudah. Dengan menggunakan kepingan aluminium pembalut makanan yang disambungkan dengan dawai pengalir kepada kad membran pertukaran hidrosida yang dipanggil generator, 12 motor kipas dapat berputar dengan baik.

Menurut Sadeg, tenaga elektrik itu diperoleh daripada aluminium dan udara yang bertindak sebagai oksida. Uji kaji itu juga dilakukan pada tin minuman diperbuat daripada aluminium.

Teknologi kuasa kad membran ini hanya diketahui ciptaannya oleh InventQjaya.

InventQjaya, syarikat penyelidikan sains dan teknologi yakin sumber tenaga masa depan manusia akan bergantung pada bahan api tidak mudah terbakar. Jika bahan api ini dikomersialkan, mungkin penggunaan petroleum dan gas boleh dikurangkan dan penggunaan bahan api logam yang dicipta oleh InventQjaya mampu membantu keperluan sumber tenaga akan datang.

Ini kerana bahan api logam ini berasaskan logam dan udara. Malah alat yang dipanggil `generator kecil' oleh Sadeg dilihat seperti sebuah bateri menggunakan hanya zink dan udara.

Bateri InventQjaya EPM 100 ini boleh dicaj semula dan diisi semula bahan apinya, dan tenaganya boleh disimpan. Proses untuk mengisi semula bahan api hanya mengambil masa sepantas lima saat. Ia mesra alam.

Kegunaan bahan api bateri zink-udara ini bertindak sebagai tenaga bantuan dan pengalir elektrik. Bahan asasnya ialah ia mempunyai katod, bahan api logam dan elektrolit. Tiada limit penggunaannya.

Generator itu sesuai untuk kegunaan di rumah terutama kawasan di luar bandar yang ketinggalan bekalan elektrik atau digunakan sebagai sumber tenaga bantuan sewaktu kecemasan.

Begitu juga satu lagi bahan api ciptaan InventQjaya yang menggunakan logam magnesium. Penggunaannya mudah, plat magnesium dicampur air garam untuk proses mengecaj, kemudian ia sudah sedia memberi bekalan elektrik berkuasa 2 watt.

Jika tidak digunakan, plat magnesium perlu dikeluarkan untuk dibersihkan. Jika ingin menggunakannya semula, masukkan air garam untuk mengoksidakan magnesium, kemudian ia sedia untuk memberi tenaga elektrik.

Bagi generator bersaiz 150 watt ia mampu membekalkan tenaga untuk tempoh tujuh hari bagi kegunaan lampu untuk tiga hingga empat jam dalam sehari. Oleh sebab ia sesuai untuk pengguna di kawasan luar bandar maka bekalan ini mencukupi untuk penyalaan lampu selama satu minggu.

Bukti masa depan bahan api logam kini tidak wajar dipertikaikan apabila InventQjaya mencipta kereta pertama dunia menggunakan elektrik yang dijana oleh kuasa bateri nikel-zink yang diberi nama MeVictory.

Penggunaan bahan api logam adalah mudah, apabila tenaganya habis, ia boleh dikeluarkan dan ditambah caj.

Sadeg yakin jika teknologi ciptaan InventQjaya yang diusahakan rata-rata saintis muda Malaysia diterima oleh dunia, manusia tidak perlu lagi mencari gali petroleum atau membina empangan hidro untuk mendapat bekalan tenaga elektrik.

Oleh itu harapan untuk generasi abad ke-21 mendapat agihan tenaga secara merata akan tercapai. Dengan demikian, pada masa depan saiz janakuasa elektrik akan bertambah kecil. Tidak perlu lagi janakuasa yang mencemarkan alam, bising dan tidak selamat.

Hasil revolusi sumber tenaga ciptaan InventQjaya, ia lebih sesuai dan praktikal, malah tidak timbul masalah bergelap apabila berlaku terputus bekalan elektrik.

By : Izzatul Husna Mat Noh

Tiga loji biodiesel MPOB dijangka bernilai RM120j

KUALA LUMPUR 6 Dis. - Cadangan pembinaan tiga buah loji biodiesel oleh Lembaga Minyak Sawit Malaysia (MPOB) dengan tiga buah syarikat tempatan tidak lama lagi, dijangka melibatkan kos pelaburan RM120 juta.

Menteri Perusahaan Perladangan dan Komoditi, Datuk Peter Chin Fah Kui berkata, tarikh sebenar bagi perlaksanaan itu masih belum ditetapkan dan tiga syarikat itu telah diberikan lesen untuk mengendalikannya.

Fah Kui berkata, setiap loji biodiesel itu mampu menghasilkan 60,000 tan minyak biodiesel setahun.

Beliau berkata, cadangan mengadakan tiga loji itu akan menjadikan jumlah keseluruhan loji yang dicadangkan pembinaannya kepada sembilan buah.

Katanya, penubuhan kesemua loji itu penting bagi negara untuk memenuhi keperluan eksport ke pasaran dunia dan berharap ia dapat mengurangkan penggantungan kepada minyak mentah.

Fah Kui berkata, pembinaan loji itu adalah salah satu inisiatif negara dalam menampung permintaan industri bahan api bio yang semakin meningkat terutamanya di Jerman, Itali, Turki, Korea Selatan dan India.

``Permintaan sejagat bagi biodiesel dijangka mencapai kepada 10.5 juta tan dalam beberapa tahun akan datang dan Malaysia berpotensi untuk 10 peratus daripada pasaran itu,'' katanya pada sidang akhbar sempena Simposium Biodiesel di sini hari ini.

Majlis itu adalah anjuran Dewan Perniagaan dan Industri Malaysia-Jerman (MGCC) bersama Agensi Tenaga Jerman dalam usaha membawa tenaga pakar tenaga dan biodiesel Jerman ke Malaysia bagi tujuan perkongsian kemahiran, pengalaman serta teknologi biodiesel kepada kedua-dua negara.

Fah Kui berkata, penambahan loji itu dijangka mampu menjadi satu alternatif kepada pemberian subsidi yang diberi oleh kerajaan jika harga minyak terus meningkat.

Katanya, negara memerlukan satu penyelesaian jangka panjang, yang mana mampu untuk menukarkan bahan keperluan kita kepada sektor yang memerlukan, serta menstabilkan perjalanan ekonomi negara pada masa depan.

Katanya lagi, loji itu akan merancakkan pertumbuhan industri biodiesel di Malaysia, bagi menggantikan petroleum dan meningkatkan eksport negara.

by : Izzatul Husna Mat Noh

REKA BANGUNAN JIMAT TENAGA

Oleh Habibah Omar

PUTRAJAYA 28 Jun – Pembinaan bangunan baru kerajaan perlu dilengkapi dengan sistem penggunaan tenaga yang cekap bagi memastikan pembangunannya dapat mengurangkan kesan negatif terhadap alam sekitar.

Menteri Tenaga, Air dan Komunikasi, Datuk Seri Dr. Lim Keng Yaik berkata, untuk itu Jabatan Kerja Raya (JKR) dan agensi kerajaan yang berkaitan perlu menerapkan aspek tersebut dalam reka bentuk bangunan.

Katanya, ia selaras dengan pengumuman Perdana Menteri ketika membentangkan bajet tahun lalu agar bangunan kerajaan dapat mengurangkan penggunaan tenaga sebanyak 10 peratus.

“Setakat ini saya belum melihat sebarang usaha dijalankan untuk mencapai matlamat berkenaan (mengurangkan tenaga sebanyak 10 peratus).

“Saya harap jabatan kerajaan, JKR dan Putrajaya Holdings mempertimbangkan apa yang diperkatakan oleh Perdana Menteri pada bulan Oktober tahun lalu.

“Peranti penjimatan tenaga boleh dibeli dan ditambah kepada sistem di mana-mana bangunan untuk menjimatkan tenaga,” katanya kepada pemberita di sini, hari ini.

Beliau berkata demikian selepas Majlis Pecah Tanah Bangunan Suruhanjaya Tenaga di Presint 2 di sini hari ini.

Bangunan itu dijangka siap pada 2009 dengan menggunakan beberapa pendekatan cekap tenaga akan diambil, antara dengan mengoptimumkan arah bangunan, memaksimumkan pembauran cahaya siang, penggunaan lampu dengan kecekapan tinggi serta pemasangan sistem penyejuk cekap tenaga.

Mengulas lanjut, Keng Yaik berkata, ketika ini pihaknya sedang mengadakan audit tenaga ke atas tujuh bangunan kerajaan termasuk JKR, Unit Perancangan Ekonomi (EPU), Hospital Selayang serta Kem Tentera di Jalan Ipoh berhubung kecekapan tenaga.

Audit tenaga itu dikendalikan oleh Timbalan Ketua Setiausaha II kementerian berkenaan, Loo Took Gee.

Sementara itu, ketika ditanya sama ada beliau akan bertanding dalam pilihan raya umum akan datang, Keng Yaik memberitahu beliau tidak akan bertanding.

“Saya kena merancang untuk tenaga elektrik. Saya mempunyai 10 tahun untuk merancang. Saya merancang sekarang tapi pelaksanaan dalam 10 tahun akan datang.

“Mana ada masa, tapi saya tidak akan bertanding dalam pilihan raya umum akan datang,” katanya.

Sementara itu Took Gee berkata, audit tenaga itu dijangka siap pada September ini dan laporan mengenainya akan dibentangkan ke Kabinet untuk membolehkan bangunan-bangunan kerajaan dibina dengan menggunakan sistem penggunaan tenaga yang cekap.

“Kita akan cadangkan pada kerajaan supaya di masa depan bila bina bangunan, aspek penjimatan tenaga dapat dijalankan kerana selama ini ia tidak dipandang serius disebabkan kadar elektrik yang rendah,” katanya.


Post by : Izzatul husna mat noh

Wednesday, August 29, 2007

United Nuclear: Hydrogen Fuel System Kit

The following report was prepared by NEC member, Gary Vesperman, as part of his documentation series on suppressed energy inventions. It was posted here at PESWiki on Aug. 28, 2007.

Overview

The United Nuclear Hydrogen Fuel System Kit converts late-model fuel-injected gasoline-powered vehicles to run on hydrogen. In addition to specific complete kits that are planned to soon be available for specific late-model cars and trucks, individual system components will be available for those who choose to assemble their own kits.
Included in the kits (and also available separately) is the company’s either solar or wind turbine-powered hydrogen generator that remains in the vehicle owner’s garage. The hydrogen generator manufactures the hydrogen fuel for the vehicle at virtually zero cost. Simply put, the vehicle’s owner never would have to buy gasoline again. Since there are no major changes made to the engine, a converted vehicle can still run on gasoline at any time.

Hydrogen Power

Powering a vehicle by hydrogen is by no means a new idea; and in fact, almost all automobile manufacturers are currently developing a new generation of vehicles that run on hydrogen as opposed to gasoline. This new generation of vehicles essentially comprises of electric cars that use fuel cell instead of batteries to run the electric motor. Using a chemical process, fuel cells in these new vehicles convert the stored hydrogen on board, and the oxygen in the air, directly into electricity to power their electric motors. These new hydrogen powered electric vehicles are very efficient, and in fact are more efficient than any internal combustion engine. The problem is that these new vehicles are years away from production, are very expensive, and converting to using hydrogen fuel in this manner requires the purchase of a new (and expensive) vehicle. All hydrogen/fuel cell systems currently under development by large manufacturers require the purchase of hydrogen as would be for gasoline.

How it Works

The United Nuclear Hydrogen Fuel System Kit is an intermediate approach that simply converts existing vehicles to burn hydrogen or gasoline. The stock gasoline fuel injection system remains intact and is not modified in any way. It is shut down while the hydrogen fuel system is activated.
The hydrogen gas is precisely metered into the air intake of the engine while the exhaust gasses are continuously analyzed for correct burn ratio. This allows the driver to switch between running on gasoline or hydrogen at any time. The engine itself is only slightly modified. The conversion makes substantial changes to the computer & electrical system, ignition and cooling systems. Since they never have to be removed, hydrogen fuel storage (hydride tanks) can be installed in virtually any available space within the vehicle.
Due to the fact that hydrogen gas burns so much faster than gasoline, engines with compression ratios greater than 9.5 to 1 are very susceptible to damaging pre-detonation (engine knock). For this reason, hydrogen conversions are not recommended for vehicles with turbochargers, superchargers, or compression ratios greater than 9.5 to 1. Also, because of the higher compression, different ignition system, and host of other factors, the Hydrogen Fuel System will not work on diesel engines.
The company’s hydrogen generator produces hydrogen from electricity. The electricity can be common "household current". If the electricity is produced directly from solar power or wind power, the energy cost is zero. Electricity can be produced by Neil Schmidt’s hydraulic wind turbine, or by a number of other wind generators such as Number 47 of http://iiic.de/4643.html which is a combined solar/wind electricity generator.
The most productive solar photo-voltaic cell seems to be the Soviet-developed high-efficiency crystal lattice solar photo-voltaic cells.
Las Vegas inventor Jeff Prescott invented a method of generating hydrogen by concentrating solar rays to heat pure iron in the presence of water. The iron oxide byproduct can be sold for paint and other uses. Questions remain as to the overall energy efficiency of his process, particularly in regard to refining and transporting the pure iron.
It does, however, take a substantial amount of time to produce sufficient hydrogen to fill even a small tank. As an example, it takes over 2 days of the company’s hydrogen generator running at full power, 24 hours a day, to fill its smallest "short range" tank.
The tanks are filled with granulated hydrides which absorb hydrogen like a sponge absorbs water. Hydrogen is pressurized into the material. Hydrides have many advantages over ultra-cold liquid or pressurized gaseous hydrogen. One is that the density of the hydrogen stored in the hydride can be GREATER than that of ultra-cold liquid hydrogen. This translates directly into smaller and fewer storage tanks.
Once the hydride is "charged" with hydrogen, the hydrogen becomes chemically bonded to the hydride. Even opening the tank, or cutting it in half will not release the hydrogen gas. In addition, if incendiary bullets are fired through the tank, the hydride would only smolder like a cigarette. It is in fact, a safer storage system than a gasoline tank.
Then how do you get the hydrogen back out? To release the hydrogen gas from the hydride, it simply needs to be heated. This is either done electrically, using the waste exhaust heat, or using the waste radiator coolant heat.
The company’s Hydrogen Fuel System kits heat the hydride tanks electrically. As soon at the hydride is sufficiently warm, hydrogen is released from the tanks, and the on-board computer detects the presence of hydrogen pressure. The fuel system remains in "Hydrogen" mode until the tank pressure begins to drop. If the tanks run out of hydrogen, the engine will seamlessly switch over to gasoline, which enables the car to run conventionally until the hydrogen tanks are refilled at zero cost.
Using hydrogen, the only exhaust products produced are water vapor and a tiny amount of nitrogen oxides. It's about as clean burning as you can get.

To Market

United Nuclear's first prototype was a 1994 Chevrolet Corvette that was converted to run on hydrogen. Using the Extended Range kit (2 sets of tanks), the driving range is over 650 miles per fill. As the hydrogen gas is produced using the company-furnished solar-powered hydrogen generator, the resulting fuel cost is near zero.

United Nuclear now has accumulated over 50,000 trouble-free miles on their prototype vehicles. They are currently fleet-testing their systems and are in final preparation for sales to the general public. They will fully guarantee and stand behind all their products and workmanship. Their conversion kits will initially sell for $7,000 to $10,000 each.
United Nuclear has developed every aspect of its Hydrogen Fuel System on their own, using their own funds and not a dime of federal tax money. They do not sell stock, and do not need investors.

Suppression

Not unexpectedly, the corrupt U.S. Government has swooped in by utilizing its Consumer Product Safety Commission (CPSC) as a means of suppressing the pending commercial sale of United Nuclear’s Hydrogen Fuel System Kit by confiscating the necessary chemicals used in this system from public use – possibly basing its action on false premises.
Currently, the CPSC is focusing on common chemical oxidizers such as perchlorate compounds, nitrate compounds, permanganate compounds, chlorate compounds, etc., along with a wide variety of other common chemicals and metals such as sulfur, aluminum, magnesium, titanium, zirconium, zinc, magnailim, benzoate compounds, salicylate compounds, antimony and antimony compounds, etc.

The CPSC now claims that this action is to stop the manufacture by United Nuclear of illegal explosive fireworks. If their true intention is to attempt to curtail the construction of these devices, there are only two chemicals which should be of concern: potassium perchlorate and German aluminum.

For those unfamiliar with exploding fireworks, they are all made from one material: flash powder. Flash powder is a mixture of potassium perchlorate, and a special ultra-fine aluminum powder known as German aluminum. These have been the only 2 chemicals used in the manufacture of every single exploding firework from firecrackers to M-80s from the 1960s to present times.

United Nuclear’s Hydrogen Fuel System Kit is not yet available for sale. There are legal problems with several components of the unit which is preventing its sale. Until the legal proceedings are complete, the company won't be moving forward with the system.

BY NURUL HIDAYAH BINTI SULONG

GM Unveils an Advanced Combustion Engine that Reduces Fuel Use

General Motors Corporation (GM) has integrated a prototype advanced combustion engine into two drivable concept cars, a 2007 Saturn Aura and its European sibling, the Opel Vectra. The prototype GM engine uses homogeneous charge compression ignition (HCCI), a combustion technology in which the gasoline is pre-mixed with air, as in spark-ignition engines, but the engine combusts the mixture using compression, like a diesel engine. HCCI engines operate at lower temperatures than conventional gasoline engines, allowing them to achieve high efficiency and low emissions. The two concept cars feature 2.2-liter, four-cylinder HCCI engines that burn up to 15% less fuel while meeting current emissions standards.
HCCI engines have been under development for years, but they have an Achilles' heel: the timing of the combustion process is difficult to control. The GM prototype accommodates that timing problem at low speeds and under low loads through several advanced engine control technologies, including cylinder pressure sensing and variable valve timing. The engine employs traditional spark ignition when it is started cold, then switches to the HCCI mode once it warms up. Under load and at speeds greater than 55 miles per hour, the engine switches back to spark ignition. GM admits that the transition is "notable" in its prototypes, but the company believes such problems can be ironed out in future production engines. See the GM press release.
Coincidentally, researchers at the Massachusetts Institute of Technology (MIT) are working with Ford Motor Company on a very similar HCCI engine. Like the GM prototype, MIT's engine switches between spark ignition and HCCI, but the MIT engine has only been operated under test conditions, not in an actual vehicle. However, the researchers have simulated urban driving conditions and have found that the engine would run in HCCI mode about 40% of the time, yielding a fuel economy improvement of "a few miles per gallon." See the MIT press release.

by NURUL HIDAYAH SULONG

Sunday, August 26, 2007

Wind power


What is it?

Modern windmills, called wind turbines, turn wind energy into electricity. If the turbines are in a group it's called a wind farm.


Strengths

This is a renewable energy source, that's because we will never run out of wind. The price of wind energy is stable; it doesn't go up and down like the price of coal or oil. The UK gets lots of wind, in fact some experts say we have the best wind resources in Europe. Once built the turbines do not produce air pollution or greenhouse gasses. They are also quick to build.


Weaknesses

There is some local opposition and concern about noise and impact on landscape. Wind is more expensive than fossil fuels and wind levels fluctuate.


The future

Wind power is the fastest growing renewable nergy source in the UK. It has lots of government support and is seen as they key to reaching the target of 20% renewable electricity by 2020.


* Based on Department of Trade and Industry 2004/2005 figures. The exact proportions change seasonally. (post by Rosehanizar Mohd Radzi)

Saturday, August 25, 2007

Develop renewable energy to generate long-term energy needs

KUALA LUMPUR Oct 28 - Energy, Water and Communications Minister, Datuk Seri Dr Lim Keng Yaik, said that Renewable Energy (RE) could be developed further in Malaysia to generate long-term energy needs, including electricity supply.
However, he said that problem might crop up in terms of pricing, like at what price could RE developers sell their energy to Tenaga Nasional Bhd (TNB).
Dr Lim said that anything new, such as RE, must be expensive, and that TNB might refuse to take anything above what they could afford.
"We have to work out the incentives, to give a higher selling price to the RE sources," he told reporters after opening the Renewable Energy Symposium organised by the Malaysian-German Chamber of Commerce and Industry here Thursday.
"We must have Renewable Energy Power Purchase Agreement (REPPA), and a standard one for that matter," he said.
Earlier in his speech, Dr Lim said that perhaps it was timely for TNB in particular, to take a more supportive role, by ensuring that the REPPA be quickly concluded with all RE developers approved by the ministry under the Small Renewable Energy Project (SREP) programme.
He said that presently, only about 12 percent of the total RE projects approved, have already concluded their REPPA with TNB.
Dr Lim believed that the electricity generated from renewable sources should be given special tariff consideration by TNB to ensure that RE projects are viable and also attractive to potential financiers.
He said that the normal average buying of electricity for independent power purchasers (IPPs) is roughly 13.5 sen to 14 sen per kilowatt/hour.
"Small Renewable Energy Project (SREP), as far as I understand, cannot pull down their cost to below 17 sen," he said.
"It is a matter of trying to work out the prices. But we may have to find slightly higher sales price in order to attract investment in this," he said.
Dr Lim said that as more people use and produce RE, the price of RE and the machineries to develop it would also come down.
He also said that financial institutions play an important role in renewable energy development, as prospective developers must seek out substantial loans besides equity to fund their projects.
"If they have to borrow funds on a year-to-year basis, and there is no availability of long-term low-cost funds, it will deter them from developing RE," he said.
He said that the lack of awareness among commercial financial institutions on benefits of RE and also the absence of viable demonstration projects in the country are some of the reasons why RE developers are facing funding problems.
Dr Lim said that the central bank could also play an important role in reforming the capital market to be oriented towards environmental projects.
He said that developing RE now is timely, as it is not only to protect the environment, but also to counter the negative effect of rising oil prices.
Under the Five Fuel Policy, Dr Lim said that RE as well as energy efficiency has been identified as important resources for the country's fuel mix together with oil, natural gas, coal and hydro.
"There is a lot of potential at all the palm oil mills, where all the empty fruit bunches are, which could be turned into RE," he said.
"Instead of sending the empty fruit bunches back to the estates, they should turn it into energy for electricity, but it is all a matter of costing," he added.
Dr Lim also said that Malaysia has to find more hydro sources as hydro sources in the Peninsular are limited to Terengganu and perhaps Pahang.
There is big potential for hydro resources in Sarawak, citing the Sungai Rejang capability to generate 20,000 megawatts of electricity, he said.
"We have to generate the popularity of these resouces, not only as an alternative resources of energy, but to also develop energy saving," he said.(by Rosehanizar Mohd Radzi)

The biomass way for new energy, cleaner environment

KUALA LUMPUR - The much-touted biomass, an inevitable organic waste which can be converted into energy and other commercial products, has yet to make any significant contribution to a cleaner environment in the country.
And in the meantime, the tonnes upon tonnes of biowaste from the country's 3.6 million hectares of oil palm - fronds, trunks and empty fruit bunches - are going to waste, adding more carbon dioxide to the atmosphere and hastening the feared "greenhouse" effect.
Director-General of Malaysian Palm Oil Board (MPOB) Datuk Dr Yusof Basiron said any burning of the oil palm waste would release carbon dioxide into the air.
But if the waste are converted into biomass and tapped as an energy source, the level of carbon in the atmosphere would be maintained if not reduced.
This is the opposite of fossil fuel sources which can only add more of the gas to hasten the greenhouse effect, he explained.
In the Malaysian context, the main supply of biomass is the oil palm plantation covering an area of 3.6 million hectares, producing over 35 million tonnes of biomass in the form of trunks, fronds and empty fruit bunches (EFB) a year.
During the replanting, the trees yield some 25 million tonnes of the trunks annually.
The current practice of disposing the oil palm waste is to dump them back to the field or to burn them - both ways give a negative impact on the environment.
With this in mind, Dr Yusof said the government had come up with the idea of producing five percent of the country's energy in 2005 from biomass, specifically oil palm waste.
"We don't want to over-exploit fossil fuel, but start using the available raw material and renewable resource," he said, while admitting that it is a big challenge to the government to get the people to use less fossil fuels.
This is because Malaysia has a lot of raw materials and energy sources such as petroleum, gas, timber and rubberwood, which put a brake on the use of oil palm biomass.
"People are still comfortable with the current raw material availability from other sources," he explained.
Dr Yusof said the importance of oil palm biomass would emerge when the shift in raw material supply takes place.
"Rubberwood which is the main source now is depleting, so the shift would be towards oil palm biomass. This natural shift would take some time to occur. This is the reason why we want the industry to respond very fast and start commercial exploitation as soon as possible, and not wait for the natural shift," he said.
He said the fact that the government had outlawed the open burning of oil palm waste is a clear message to the industry players to find a profitable use of the waste.
It is up to the industry to maximise revenue by making the biomass in the most efficient and profitable way, he said.
Noting that necessity in the mother of all inventions, he said the low prices of palm oil and lack of income would drive the industry to go for the greater use of oil palm biomass.
He said incentives like rebates, tax exemption and regulations would also induce all sectors, especially big industry players, to employ environment-friendly energy use.
Dr Yusof felt that there is no need for other organic waste when the oil palm sector is the main source of biomass. "It has excess amounts (of biomass) and that should be exploited right now," he argued.
The industry, he said, had to work out on the logistics factor in such a way there would be minimum transporting cost of raw material and finished products.
"The raw materials should be also transported with great efficiency, meaning that they should not transport very crude kind of raw materials because they contain a lot of water," he said.
So, there must be a scheme to allow each mill to have a pre-processing facility to dry the fiber and compact it before it is marketed, said Dr Yusof.
As for funding of these projects, he said a lot of banks such as Bank Industri and even the commercial banks would look at the viability of a project before giving the financial backing.
As far as biomass is concerned, he said it is something very new and the banks need to be fully exposed, especially on the potentials of the industry.
To make things click, he said MPOB had invested RM20 million to RM30 million (on R&D work) in the last 20 years.
MPOB had also been very aggressive to make the biomass industry a success, and had staged various seminars to unfold the potentials of the industry for the players and the banks.
Recently, MPOB jointly organised a two-day seminar on "Oil Palm Biomass: Opportunities for Commercialisation" with Faunhofer Liaison Office, Malaysia and The Chamber of Commerce, Hannover Hildersheim, Lower Saxonia, Germany.
MPOB, he said, has also established a medium density fiberboard (MDF) pilot plant to undertake development work with the objective of gradually replacing rubberwood as a major material for MDF and improving the quality of the MDF produced.
"We are there to help the companies that have problems in shifting from rubberwood to oil palm fibers," he added. - Bernama (by Rosehanizar Mohd Radzi & Noor Sakinah Che Wang)

Friday, August 24, 2007

Suria sumber tenaga masa depan

KEPESATAN pembangunan industri sesungguhnya memerlukan penggunaan tenaga elektrik yang banyak tanpa mengira dari mana sumber tenaga tersebut datang.
Malangnya, dunia terlalu banyak bergantung kepada sumber daripada fosil seperti arang batu, petroleum dan gas asli untuk menjana elektrik, selain tenaga nuklear yang akan habis satu hari nanti.
Tenaga nuklear boleh dijadikan sumber tenaga untuk menjana elektrik tetapi kebimbangan masyarakat dunia berhubung kemalangan yang berlaku di loji nuklear Three Miles Island, Amerika Syarikat dan Chernobyl, Rusia menyebabkan penggunaan sumber tenaga itu dikhuatiri akan mencemarkan dunia dengan sinaran nuklear, sekiranya berlaku kemalangan.
Sumber tenaga yang boleh diperbaharui seperti tenaga suria, biojisim, angin, geoterma dan ombak merupakan alternatif terbaik kerana sumber tenaganya adalah berkekalan, tidak mencemarkan alam, tidak dipengaruhi politik antarabangsa dan boleh diperoleh secara setempat (tidak perlu diimport).
Namun begitu, manusia tidak boleh terlalu bergantung kepada sumber-sumber tenaga tersebut atas pelbagai sebab.
Menurut pakar penyelidik tenaga suria dari Universiti Kebangsaan Malaysia (UKM), Prof. Dr. Mohd. Yusof Othman, keperluan dan penggunaan tenaga pada masa ini perlu mengambil kira tiga faktor utama iaitu:
1) Dapat memberikan tenaga yang secukupnya dalam pembangunan negara.
2) Terus memberikan sumbangan kepada sektor ekonomi.
3) Penjanaannya mestilah tidak memberikan kesan negatif kepada alam sekitar.
``Kita tidak boleh selama-lamanya berharapkan kepada sumber tenaga fosil seperti arang batu dan minyak kerana ia akan kehabisan dan boleh terjejas sekiranya berlaku peperangan dan masalah politik,'' katanya.
Pada masa yang sama, sumber tenaga ini mengambil masa terlalu lama untuk dihasilkan secara semula jadi, manakala pembakaran pula akan menghasilkan tenaga sampingan yang mencemarkan alam sekitar seperti pembuangan ke udara gas karbon dioksida, gas nitrik dan sulfur yang menyumbang kepada fenomena rumah hijau.
Pembinaan empangan hidroelektrik pula memerlukan perbelanjaan yang besar dan juga boleh mengubah ekosistem setempat.
Sekiranya tidak dilaksanakan secara berhati-hati dan perancangan rapi, projek seumpama ini boleh menjejaskan alam sekitar dalam jangka panjang.
Satu daripada inisiatif manusia untuk mencari alternatif sumber tenaga kekal ialah melalui teknologi fotovoltaik.
Tenaga fotovoltaik merujuk kepada penjanaan tenaga elektrik menggunakan cahaya matahari atau dikenali sebagai foton. Fotovoltaik adalah bahan yang dapat menukarkan sinaran suria kepada tenaga elektrik.
Fotovoltaik dipetik daripada dua perkataan iaitu foto yang bermaksud foton atau cahaya atau gelombang elektromagnet dan voltan bermaksud daya gerak elektrik.
Teknologi ini sudah digunakan dengan begitu meluas di negara-negara maju termasuk Jepun, Amerika Syarikat dan negara-negara Eropah.
Pada peringkat permulaan, teknologi ini diperkenalkan bagi membekalkan tenaga kepada projek satelit di angkasa. Kemajuan dalam teknologi ini yang begitu pesat membolehkan manusia menggunakannya secara meluas sejak sedekad yang lalu.
Penggunaannya dilakukan dengan menyepadukan penggunaan sumber tenaga ini dengan sumber tenaga lain yang sedia ada seperti diesel, bateri dan juga angin. Terbaru, teknologi ini sedang giat diusahakan untuk disambung ke grid atau pendawaian awam supaya mengurangkan pergantungan kepada tenaga daripada fosil dalam penjanaan elektrik di rumah kediaman dan bangunan.
Menurut Dr. Mohd. Yusof, manusia telah pun menggunakan tenaga suria sebagai sumber tenaga sejak turun-temurun. Namun penggunaannya agak tradisional seperti pengawetan bahan makanan dan pengeringan hasil pertanian yang dilakukan dengan menjemurnya di kawasan lapang.
Beliau berkata, fotovoltaik telah ditemui oleh ahli fizik Perancis bernama Edmond Becquerel pada 1839.
Katanya, ketika itu Becquerel telah menulis satu kertas kerja mengenai kajian ke atas bateri basah. Ahli fizik tersebut mendapati voltan baterinya bertambah apabila plat perak pada bateri tersebut dikenakan tenaga suria.
Bagaimanapun, kajian tersebut tidak banyak memberi sumbangan kepada pembangunan sel suria sebaliknya konsep tersebut digunakan sebagai asas kajian bidang fotografi.
Selepas itu, dua ahli sains dari Universiti Cambridge iaitu Adams dan Day berjaya mendapatkan kesan fotovoltaik dalam bahan pepejal pada 1877.
Mereka membuat kajian ke atas bahan selenium yang mendapati perubahan sifat elektrik apabila bahan ini didedahkan kepada sinaran suria.
Pada 1883, seorang pakar elektrik dari New York, Charles Edgar Fritts pula berjaya membina sel suria daripada bahan selenium yang menyerupai sel silikon yang banyak digunakan pada hari ini.
Bagaimanapun, pada peringkat awal kajian, didapati kecekapan sel suria hanya dalam lingkungan satu peratus sahaja. Apabila seorang ahli fizik terkenal, Max Planck dapat menerangkan secara teori bagaimana proses penukaran tenaga foton kepada elektron, maka barulah bahan asas untuk membina sel suria diperoleh.
Akhirnya pada 1950-an, Bell Telephone Laboratories telah membuka sejarah dalam perkembangan sel suria dengan penggunaan semikonduktor apabila tiga ahli fiziknya, Drryl Chapin, Calvin Fuller dan Gerard Pearson berjaya dalam penyelidikan mereka ke atas bahan semikonduktor yang disinari dengan cahaya.
Semikonduktor adalah bahan bukan logam seperti silikon yang mempunyai sifat yang berada antara bahan konduktor (pengalir elektrik) dan insulator (yang menebat atau tidak dapat mengalir elektrik) apabila dikenakan sinaran suria.
Apabila tidak disinari suria, kuasa elektrik tidak dijana. Bahan semikonduktor ini bersifat bahan pengalir elektrik kerana apabila terkena sinaran suria, elektron dalam bahan tersebut akan teruja.
Apabila semikonduktor dikenakan cahaya, sebahagian elektron yang menghuni aras tenaga ini akan memperoleh tenaga yang cukup untuk melampaui satu aras yang dikenali aras Fermi dan membolehkannya mengalirkan elektrik.
Oleh kerana sinaran suria dapat menjana tenaga dalam bentuk haba dan elektrik, satu sistem boleh menukarkan tenaga suria kepada tenaga haba dan elektrik boleh diwujudkan.
Berdasarkan prinsip tersebut, Dr. Mohd. Yusof berjaya menghasilkan pengumpul tenaga suria yang beliau namakan Pengumpul Suria Fotovoltaik-Terma atau PVT. Pengumpul PVT ini terdiri daripada 50 sel suria (diperbuat daripada silikon) yang disusun dan diletakkan dalam bekas tertutup.
Bagi meningkatkan prestasi pengumpulan tenaga, sinaran suria ditumpukan kepada sel suria dengan menggunakan penumpu parabola rencam (compound parabolic concentrator).
Dengan teknik ini, sinaran suria terfokus kepada sel suria yang menukarkannya kepada tenaga elektrik dan pada masa yang sama haba (melalui pemanasan udara), dapat dikumpulkan. Bagi meningkatkan kecekapan penukaran sinaran suria kepada haba, `sirip' yang dibuat daripada kepingan aluminium diletak di bahagian bawah sel suria.
Menerusi sistem ini, tenaga elektrik dapat dihasilkan sehingga 50 watt manakala suhu udara dapat ditingkatkan sehingga 600C. PVT ini sesuai digunakan menghasilkan udara panas untuk projek pengeringan manakala tenaga elektrik yang dihasilkan dapat digunakan untuk menjalankan kipas dan pam.
Menurut Dr. Mohd. Yusof, sistem yang dikaji dapat membekalkan tenaga untuk sistem terpencil.
``Sebagai contoh, ia dapat digunakan di kawasan yang jauh dari bekalan elektrik manakala udara panas boleh digunakan untuk membolehkan kipas berfungsi mengalirkan udara dalam sistem pengeringan tersebut,'' katanya.

(by NURUL HIDAYAH SULONG)

Tuesday, August 21, 2007

Electricity from Natural Gas

Natural gas is a fossil fuel formed when layers of buried plants and animals are exposed to intense heat and pressure over thousands of years. The energy that the plants and animals originally obtained from the sun is stored in the form of carbon in natural gas. Natural gas is combusted to generate electricity, enabling this stored energy to be transformed into usable power. Natural gas is a nonrenewable resource because it cannot be replenished on a human time frame.
The natural gas power production process begins with the extraction of natural gas, continues with its treatment and transport to the power plants, and ends with its combustion in boilers and turbines to generate electricity.
Initially, wells are drilled into the ground to remove the natural gas. After the natural gas is extracted, it is treated at gas plants to remove impurities such as hydrogen sulfide, helium, carbon dioxide, hydrocarbons, and moisture. Pipelines then transport the natural gas from the gas plants to power plants.
Power plants use several methods to convert gas to electricity. One method is to burn the gas in a boiler to produce steam, which is then used by a steam turbine to generate electricity. A more common approach is to burn the gas in a combustion turbine to generate electricity.
Another technology, that is growing in popularity is to burn the natural gas in a combustion turbine and use the hot combustion turbine exhaust to make steam to drive a steam turbine. This technology is called "combined cycle" and achieves a higher efficiency by using the same fuel source twice.
(sharifah norazira)

Electricity from Oil

Electricity from Oil

In the United States, oil is used mostly for transportation or home heating purposes, although a small percentage is used as a fuel for electricity generating plants. As with other fossil fuels, oil is found in underground reservoirs. It is the end product of the decomposition of organic materials that have been subjected to geologic heat and pressure over millions of years. Oil is considered a nonrenewable resource because it cannot be replenished on a human timeframe.
The activities involved in producing electricity from oil begin with the extraction of the oil and end with its burning in boilers and turbines at power plants. Initially, crude oil is removed from the ground by drilling deep wells and pumping it up to the surface.
The crude oil is then transported to a refinery where it is refined into a number of fuel products, including gasoline, kerosene, liquefied petroleum gas (such as propane), distillates (diesel and jet fuels), and "residuals" that include industrial fuels. Refineries remove a portion of the impurities in the crude oil, such as sulfur, nitrogen, and metals.
From the refinery, oil is transported to power plants by ship, pipelines, truck, or train. At power plants, several methods can be used to generate electricity from oil. One method is to burn the oil in boilers to produce steam, which is used by a steam turbine to generate electricity. A more common method is to burn the oil in combustion turbines, which are similar to jet engines. Another technology is to burn the oil in a combustion turbine and use the hot exhaust to make steam to drive a steam turbine. This technology is called "combined cycle" and is more efficient because it uses the same fuel source twice.

Environmental Impacts

Although power plants are regulated by federal and state laws to protect human health and the environment, there is a wide variation of environmental impacts associated with power generation technologies.
The purpose of the following section is to give consumers a better idea of the specific air, water, and solid waste releases associated with oil-fired electricity generation.
(sharifah norazira)

Electricity from Coal

Coal is a fossil fuel formed from the decomposition of organic materials that have been subjected to geologic heat and pressure over millions of years. Coal is considered a nonrenewable resource because it cannot be replenished on a human time frame.
The activities involved in generating electricity from coal include mining, transport to power plants, and burning of the coal in power plants. Initially, coal is extracted from surface or underground mines. The coal is often cleaned or washed at the coal mine to remove impurities before it is transported to the power plant—usually by train, barge, or truck. Finally, at the power plant, coal is commonly burned in a boiler to produce steam. The steam is run through a turbine to generate electricity. (sharifah norazira)

Monday, August 20, 2007

Geothermal Energy


How it works


Geothermal simply means 'Earth's heat'. The centre of the Earth is extremely hot, current estimates are 5,500C at the core just over six and a half thousand kilometres below the crust. This is about as hot as the surface of the sun.


It is not surprising therefore, that even the upper 3 metres of the Earth's surface stay at a nearly constant 10-16C throughout the year.


There are three main ways of tapping geothermal energy:



Direct use


Geothermal heat found near the surface of the Earth can be used directly for heating buildings (District Heating - the system that supplies communities with hot water or heating - being the most well known) and for a number of commercial and industrial uses.



Geothermal heat pumps


The relatively constant temperature of the top 15 metres of the Earth's surface (or ground water) can be used to heat or cool buildings indirectly. The pump uses a series of pipes to circulate fluid through the warm ground. In the winter when the ground is warmer than the buildings above, the liquid absorbs heat from the ground, which is then concentrated and transferred to the buildings. This can also be used to heat domestic water. In the summer, when the ground is cooler, the pump transfers heat from the buildings back into the ground.



Electricity production


There are three types of power plant that can convert geothermal energy to electricity, depending on the temperature of the geothermal fluid used. All three use a turbine that is driven by steam, which then drives a generator to produce electricity.


The past



Humans have used geothermal energy for thousands of years, using hot springs initially for cooking and building reservoirs around springs to create shrines and bathing complexes such as those built at Bath by the Romans.
The world's first District Heating system was built in 1892 in Idaho, USA and piped hot water from springs to town buildings. The first geothermal power plant was built in Ladarello in Italy in 1904.
The dramatic rise in oil prices in the late 1970s prompted the Department of Energy in the UK to look for alternative energy sources. A number of deep geothermal aquifers were identified.
One scheme in Southampton has been developed privately and was launched in 1986 and provides a heating and chilling system for a number of domestic and commercial consumers.



The advantages


By using geothermal energy, no fossil fuel burning is required. Geothermal power plants emit only excess steam and very few trace gases (1000-2000 times less carbon dioxide than fossil fuel power plants), they take up very little land compared to traditional fossil-fuel plants and advanced drilling techniques minimise the impact of drilling wells.
The electricity produced is also more 'available', as fossil-fuelled power plants produce electricity 65-75% of the time compared to 90% from geothermal power plants. While geothermal resources are not spread uniformly, geothermal heat pumps can be used nearly anywhere.



The costs



When a heat pump is used to provide domestic heating, the savings on electricity can outweigh the cost of installing and running the system. Where geothermal energy is used in agriculture (such as to heat greenhouses) heating costs can be cut by up to 80%. The cost of electricity from geothermal power plants is slowly becoming competitive with that from traditional power plants.



The future



The next step in using heat trapped inside the earth, is to drill deeper and circulate water through the hot dry rock found 3 - 5 miles under the surface, or to venture even deeper and try to utilise the hottest source of all - the molten and semi-molten magma that makes up the Earth's core.

(post by rosehanizar & noor sakinah)

Biofuels: Green energy or grim reaper?


View Point by Jeffrey A McNeely

Biofuels could end up damaging the natural world rather than saving it from global warming, argues Jeff McNeely in the Green Room. Better policies, better science and genetic modification, he says, can all contribute to a greener biofuels revolution.

With soaring oil prices, and debates raging on how to reduce carbon emissions to slow climate change, many are looking to biofuels as a renewable and clean source of energy.
The European Union recently has issued a directive calling for biofuels to meet 5.75% of transportation fuel needs by 2010. Germany and France have announced they intend to meet the target well before the deadline; California intends going still further.
This is a classic "good news-bad news" story.
Of course we all want greater energy security, and helping achieve the goals (however weak) of the Kyoto Protocol is surely a good thing.
This is a classic "good news-bad news" story.
Of course we all want greater energy security, and helping achieve the goals (however weak) of the Kyoto Protocol is surely a good thing.
However, biofuels - made by producing ethanol, an alcohol fuel made from maize, sugar cane, or other plant matter - may be a penny wise but pound foolish way of doing so.

Consider the following:



  • The grain required to fill the petrol tank of a Range Rover with ethanol is sufficient to feed one person per year. Assuming the petrol tank is refilled every two weeks, the amount of grain required would feed a hungry African village for a year


  • Much of the fuel that Europeans use will be imported from Brazil, where the Amazon is being burned to plant more sugar and soybeans, and Southeast Asia, where oil palm plantations are destroying the rainforest habitat of orangutans and many other species. Species are dying for our driving


  • If ethanol is imported from the US, it will likely come from maize, which uses fossil fuels at every stage in the production process, from cultivation using fertilisers and tractors to processing and transportation. Growing maize appears to use 30% more energy than the finished fuel produces, and leaves eroded soils and polluted waters behind



  • Meeting the 5.75% target would require, according to one authoritative study, a quarter of the EU's arable land



  • Using ethanol rather than petrol reduces total emissions of carbon dioxide by only about 13% because of the pollution caused by the production process, and because ethanol gets only about 70% of the mileage of petrol



  • Food prices are already increasing. With just 10% of the world's sugar harvest being converted to ethanol, the price of sugar has doubled; the price of palm oil has increased 15% over the past year, with a further 25% gain expected next year.

Little wonder that many are calling biofuels "deforestation diesel", the opposite of the environmentally friendly fuel that all are seeking.
With so much farmland already taking the form of monoculture, with all that implies for wildlife, do we really want to create more diversity-stripped desert?
Others are worried about the impacts of biofuels on food prices, which will affect especially the poor who already spend a large proportion of their income on food.

Biotech boost

So what is to be done? The first step is to increase our understanding of how nature works to produce energy.
Amazingly, scientists do not yet have a full understanding of the workings of photosynthesis, the process by which plants use solar energy to absorb carbon dioxide and build carbohydrates.

Some environmentalists are worried that altered trees will cross-breed with wild trees, resulting in a drooping forest rather than one that stands tall Biotechnology, its reputation sullied by public protests over GM foods, may make important contributions. According to the science journal Nature, recombinant technology is already available that could enhance ethanol yield, reduce environmental damage from feedstock, and improve bioprocessing efficiency at the refinery.
The Swiss biotech firm Syngenta is developing a genetically engineered maize that can help convert itself into ethanol by growing a particular enzyme.
Others are designing trees that have less lignin, the strength-giving substance that enables them to stand upright, but makes it more difficult to convert the tree's cellulose into ethanol.
Some environmentalists are worried that these altered trees will cross-breed with wild trees, resulting in a drooping forest rather than one that stands tall and produces useful timber and wildlife habitat.
In the longer run, biotech promises to help convert wood chips, farm wastes, and willow trees into bioethanol more cheaply and cleanly, thereby helping meet energy needs while also improving its public image.

Public stake

But that is not nearly enough; bioenergy is too important to be left in the hands of the private sector.
Many of the social and environmental benefits of bioenergy are not priced in the market, so the public sector needs to step in to ensure these benefits are delivered.
An easy immediate step would be to mandate improved fuel efficiency for all forms of transport, beginning with the private automobile. A 20% increase in fuel-efficiency standards is feasible using current technology, and would save far more energy than Europe's biomass could produce. Governments also need to provide leadership in the form of economic incentives to minimise competition between food and fuel crops, and ensure that water, high-quality agricultural land, and biodiversity are not sacrificed on the altar of our convenience.
Calculations of energy return on investment need to include environmental impacts on soil, water, climate change, and ecosystem services.
The bottom line is that biofuels can contribute to energy and environmental goals only as part of an overall strategy that includes energy conservation, a diversity of sustainable energy sources, greater efficiency in production and transport, and careful management of ethanol production.
Jeffrey A McNeely is chief scientist of IUCN, the World Conservation Union, based in Switzerland (post by rosehanizar and noor sakinah)

Saturday, August 18, 2007

Hak Rakyat Pedalaman Dapat Kemudahan Asas

Masalah kemudahan asas seperti bekalan elektrik, air bersih dan sistem perhubungan masih menjadi agenda utama pembangunan negara khususnya untuk kawasan pedalaman dan luar bandar.

Ketika pembangunan rancak dimajukan di kawasan strategik, jangan dilupakan peluang yang sama patut dinikmati oleh rakyat yang jaraknya jauh dari ‘teropong’ pentadbiran negeri dan Pusat.

Barangkali kemudahan air dan pengangkutan bukan menjadi isu utama di pedalaman kerana mereka punya alternatif lain. Tetapi adalah kesukaran bagi mereka melakukan pelbagai aktiviti harian jika tidak mendapat bekalan elektrik.

Walaupun segelintir masyarakat negara ini masih berada di bawah garis kemiskinan terutama di pedalaman, hak untuk mereka mendapat nikmat pemodenan hasil kemajuan sains dan penggunaan tenaga elektrik, tidak patut dinafikan.

Sebab itu saranan Perdana Menteri supaya penggunaan alam semula jadi sebagai sumber alternatif bagi menjana bekalan kuasa elektrik di kawasan pedalaman dan luar bandar perlu diteroka, ada logiknya.

Sudah lama penduduk pedalaman inginkan bekalan elektrik bagi menyinari kegelapan rumah mereka, sambil menikmati gaya hidup baru sebagai- mana rakyat lain.

Jika Pulau Banggi, Kudat, yang berangin sesuai digunakan kincir angin untuk menghasilkan tenaga elektrik, maka kajian segera wajar dilakukan.

Baik kita lupakan alasan lapuk, bekalan elektrik tidak dapat disalurkan ke kawasan pedalaman kerana masalah jarak jauh dan kos logistiknya mahal. Dengan pelbagai penemuan kajian ahli sains maka tidak mustahil apa yang diharapkan oleh masyarakat pedalaman dan luar bandar di seluruh negara, kini boleh direalisasikan.

Kawasan luar bandar dan pedalaman yang masih berkeadaan seperti negara sebelum merdeka dan tanpa bekalan kemudahan asas, perlu diberi perhatian utama oleh kerajaan dan syarikat korporat yang berkenaan.

Berada di luar bandar atau pedalaman tidak bermakna mereka terus tidak layak mendapat kemudahan asas.

Sepatutnya masalah bekalan elektrik tidak menjadi isu ketika ini yang mana pelbagai cara dan kaedah yang murah boleh digunakan. Perdana Menteri ketika melancarkan Program Lonjakan Mega Luar Bandar dan merasmikan Projek Agropolitan di Pulau Banggi telah membuka mata betapa begitu banyak tenaga sudah kita persia-siakan selama ini.

Selain penggunaan teknologi kincir angin, di kawasan pedalaman lain boleh menggunakan sumber alam termasuk air terjun dan sungai untuk menghasilkan tenaga.

Persoalan sekarang, apa yang dicetuskan oleh Perdana Menteri itu mahu direalisasikan atau dibiarkan ia berlalu begitu saja hingga beberapa dekad akan datang.

Hakikatnya dalam membasmi kemiskinan, hak masyarakat luar bandar dan pedalaman untuk mendapat kemudahan asas – air dan elektrik – yang kita nikmati sejak merdeka 50 tahun lalu, tidak patut dinafikan. (posted by istiqomah)


Town leads UK solar energy drive


Huddersfield, once at the heart of the industrial revolution, is now leading the UK's drive to produce green energy, new figures have shown.
The West Yorkshire town is producing 5% of the country's domestic solar power - more than any other district - thanks to a major council-backed project.
Kirklees Council has teamed up with the European SunCities scheme to install solar panels on 250 council houses.
Panels are also in use at its council care homes and on some private housing.

Kirklees Council renewable energy officer Kate Parsons said: "By the end of February we will have installed 4.9% of the total amount of solar electricity installed in the UK, making it the largest domestic solar project in the UK."
The figure is based on the government's recently-published data for its micro-generation strategy - the generation of energy through local schemes.
Householders taking part in the scheme - many elderly or families with young children - can expect to save up to £50 a year on their electricity bills.
"This is a vital tool in the council's fight against fuel poverty among vulnerable groups," said Ms Parsons.
On Monday, a delegation of experts from SunCities projects in Germany and the Netherlands was arriving in Huddersfield for a two-day visit to study the town's solar projects. (post by rosehanizar mohd radzi)

Friday, August 17, 2007

translate..PM: Teroka tenaga alternatif

KUDAT 11 Ogos – Datuk Seri Abdullah Ahmad Badawi mahu penggunaan alam semula jadi sebagai sumber alternatif menjana bekalan kuasa elektrik diteroka khususnya di kawasan pedalaman dan luar bandar.
Perdana Menteri berkata, sudah tiba masanya semua pihak berusaha memanfaatkan sumber alam semula jadi itu di kawasan yang sesuai sebelum diperluaskan ke kawasan lain.
Beliau menarik perhatian mengenai kedudukan Pulau Banggi di sini yang mempunyai tiupan angin kencang sepanjang masa dan sesuai untuk dibina kincir angin bagi menjana kuasa elektrik.
‘‘Kita perlu menggunakan kincir angin untuk menghasilkan tenaga sebagai alternatif. Jika berjaya, ia boleh dikembangkan di tempat lain.
‘‘Ini kerana membina sistem bekalan elektrik di tempat yang jauh, terpencil amat mahal,” katanya kepada pemberita selepas melancarkan program Lonjakan Mega Luar Bandar dan merasmikan Projek Agropolitan Pulau Banggi hari ini.
Ketika ini penjanaan tenaga elektrik 12 jam dibekalkan kepada penduduk di Pulau Banggi menggunakan set generator manakala beberapa buah solar hibrid baru dibina sebagai tambahan.
Abdullah berkata, selain kincir angin, penduduk luar bandar boleh terus menggunakan konsep solar hibrid yang juga lebih sesuai, mudah dan murah.
Jelas beliau, pada peringkat permulaan, penyediaan peralatan kincir angin mungkin agak mahal kerana teknologinya perlu diimport dari luar negara tetapi jika penggunaannya semakin meluas, tentu ia akan menjadi lebih murah.
‘‘Kita import dahulu dan lama-kelamaan kita boleh menggunakan kepakaran kita sendiri dan mungkin juga kita dah ada sendiri (peralatan),” katanya.
Beliau turut melahirkan keyakinan penggunaan teknologi kincir angin juga akan mengalami perubahan dan penambahbaikan dari semasa ke semasa sehingga ia benar-benar dapat memanfaatkan penduduk yang jauh dari bandar.
Begitu juga, katanya, dalam aspek penyediaan bekalan air bersih di kawasan pedalaman boleh dimajukan dengan pelbagai alternatif bersesuaian dan ada yang telah berjaya diperkenalkan di beberapa kawasan di negara ini.

Wednesday, August 15, 2007

Indonesian oil reserves will run out in 20 years, says research group

NUSA DUA (Indonesia) June 4 - Indonesia's oil reserves will be exhausted in 20 years if the current production level of 500 million barrels a year is maintained, a research group said Tuesday.
Pelangi, an Indonesian research group focusing on energy and environment issues, said the use of liquid fossil fuels in the energy mix in Indonesia remains significant although it has decreased over the past 20 years.
Fossil fuels are used for half the fuel needs of industry, about 70 percent in households and 99.9 percent for transport, said the group in a statement.
It predicted that Indonesia would be a net oil importer in the next 10 years.
``This spells disaster,'' said Moekti Soejachmoen, Pelangi deputy director.
He was speaking on the sidelines of a UN meeting on Bali island to prepare for the World Summit on Sustainable Development opening in Johannesburg on August 26.
Thousands of officials and activists have been meeting since May 23 to hammer out a plan of action to be adopted in the Johannesburg Summit.
Indonesia could have saved 1.2 billion dollars in 2000 had it used energy as efficiently as other developing countries, Soejachmoen said.
He urged Indonesia to develop renewable energy sources.
``Indonesia can no longer rely on non-renewable sources of income such as oil, but instead it should develop its renewable source such as human capacity,'' he said.
This year's government budget assumes crude oil production of 1.32 million barrels a day, or 482 million barrels a year. The US embassy in a report estimated reserves at 9.6 billion barrels.
Energy is one of the contentious issues at the Bali meeting.
The US and several other developed states oppose a proposal by the European Union and developing nations that 15 percent of energy consumption must come from renewable sources in 2010. - AFP

The biomass way for new energy, cleaner environment

KUALA LUMPUR - The much-touted biomass, an inevitable organic waste which can be converted into energy and other commercial products, has yet to make any significant contribution to a cleaner environment in the country.
And in the meantime, the tonnes upon tonnes of biowaste from the country's 3.6 million hectares of oil palm - fronds, trunks and empty fruit bunches - are going to waste, adding more carbon dioxide to the atmosphere and hastening the feared "greenhouse" effect.
Director-General of Malaysian Palm Oil Board (MPOB) Datuk Dr Yusof Basiron said any burning of the oil palm waste would release carbon dioxide into the air.
But if the waste are converted into biomass and tapped as an energy source, the level of carbon in the atmosphere would be maintained if not reduced.
This is the opposite of fossil fuel sources which can only add more of the gas to hasten the greenhouse effect, he explained.
In the Malaysian context, the main supply of biomass is the oil palm plantation covering an area of 3.6 million hectares, producing over 35 million tonnes of biomass in the form of trunks, fronds and empty fruit bunches (EFB) a year.
During the replanting, the trees yield some 25 million tonnes of the trunks annually.
The current practice of disposing the oil palm waste is to dump them back to the field or to burn them - both ways give a negative impact on the environment.
With this in mind, Dr Yusof said the government had come up with the idea of producing five percent of the country's energy in 2005 from biomass, specifically oil palm waste.
"We don't want to over-exploit fossil fuel, but start using the available raw material and renewable resource," he said, while admitting that it is a big challenge to the government to get the people to use less fossil fuels.
This is because Malaysia has a lot of raw materials and energy sources such as petroleum, gas, timber and rubberwood, which put a brake on the use of oil palm biomass.
"People are still comfortable with the current raw material availability from other sources," he explained.
Dr Yusof said the importance of oil palm biomass would emerge when the shift in raw material supply takes place.
"Rubberwood which is the main source now is depleting, so the shift would be towards oil palm biomass. This natural shift would take some time to occur. This is the reason why we want the industry to respond very fast and start commercial exploitation as soon as possible, and not wait for the natural shift," he said.
He said the fact that the government had outlawed the open burning of oil palm waste is a clear message to the industry players to find a profitable use of the waste.
It is up to the industry to maximise revenue by making the biomass in the most efficient and profitable way, he said.
Noting that necessity in the mother of all inventions, he said the low prices of palm oil and lack of income would drive the industry to go for the greater use of oil palm biomass.
He said incentives like rebates, tax exemption and regulations would also induce all sectors, especially big industry players, to employ environment-friendly energy use.
Dr Yusof felt that there is no need for other organic waste when the oil palm sector is the main source of biomass. "It has excess amounts (of biomass) and that should be exploited right now," he argued.
The industry, he said, had to work out on the logistics factor in such a way there would be minimum transporting cost of raw material and finished products.
"The raw materials should be also transported with great efficiency, meaning that they should not transport very crude kind of raw materials because they contain a lot of water," he said.
So, there must be a scheme to allow each mill to have a pre-processing facility to dry the fiber and compact it before it is marketed, said Dr Yusof.
As for funding of these projects, he said a lot of banks such as Bank Industri and even the commercial banks would look at the viability of a project before giving the financial backing.
As far as biomass is concerned, he said it is something very new and the banks need to be fully exposed, especially on the potentials of the industry.
To make things click, he said MPOB had invested RM20 million to RM30 million (on R&D work) in the last 20 years.
MPOB had also been very aggressive to make the biomass industry a success, and had staged various seminars to unfold the potentials of the industry for the players and the banks.
Recently, MPOB jointly organised a two-day seminar on "Oil Palm Biomass: Opportunities for Commercialisation" with Faunhofer Liaison Office, Malaysia and The Chamber of Commerce, Hannover Hildersheim, Lower Saxonia, Germany.
MPOB, he said, has also established a medium density fiberboard (MDF) pilot plant to undertake development work with the objective of gradually replacing rubberwood as a major material for MDF and improving the quality of the MDF produced.
"We are there to help the companies that have problems in shifting from rubberwood to oil palm fibers," he added. - Bernama

Solar-powered dream house


THERE are several features about this house that are pertinent. The first is its location, the other its terrain. Country Heights Damansara is slowly shaping up to have some pretty unique and fashionable real estate for the well-heeled. Whether it will become a fashionable address in the years to come is to be seen as this is a new area.
The exceptional features of some of its real estate are due, to a large extent, to its sloping terrain. It is a double-edged sword, actually, as owners of the vacant bungalow lots are beginning to discover as they begin construction. Cost is about 30% to 40% higher than if it were to be on flat land.
It is because the building is on such uneven terrain and contours that creative and architectural possibilities are pushed to the maximum with some amazing results for some of its bungalows. This also drives up the costs. Over on this hill beside the Penchala toll plaza on the Leburaya Damansara-Puchong, what is on level ground is considered mundane. It is against this backdrop that the owner of this three-storey bungalow has built his dream house.
A rather contemporary piece of work, the only part of this house that is at road level is the car porch and entrance foyer, which can fit eight Myvis or six BMWs. A feature wall with natural green stone runs across the house, hiding the rest from view. A stretch of louvered windows runs across the house at the entrance foyer behind the feature wall.
“Because of the natural green surroundings, and the fact that this house is on a hill in a lovely green environment, I have designed the house in such a way as to allow as much light and wind to come in. The place is absolutely airy, around the clock,” the owner says.
A flight of stairs down leads to the living area, dining and kitchen. The main focus of the living area is the view of the hills that straddle Country Heights Damansara and Taman Tun Dr Ismail.
He has taken full advantage of this by having glass on two sides of the living area, from floor to ceiling, with a timber deck wrap around it in the shape of the letter ‘L’. From the living area, one can walk to the timber terrace and onto the narrow strip of a pool, way above ground level. Incidentally, it is a drop of about 70 ft between the road level and the lowest point of the house.
On the same level as the living area and pool are the kitchen and the AV room. The house does not have any built-ins.
The master bedroom, guest room and family lounge is on the lower ground floor while three other bedrooms and another family area are on the first floor.
A pertinent focus of this house is that it is one of several which opted for a subsidy scheme under the Malaysia Energy Centre (MEC) to be fitted with solar panels to harness energy from the sun. MEC is a non-profit organisation under the Energy, Water and Communications Ministry.The house is fitted with 50 pieces of solar photovoltaic panels (4 KW) at a cost of about RM110,000, at a 25% discount.
The Malaysian Building Integrated Photovoltaic (MBIPV) programme national project leader Ahmad Hadri Harif, at the Malaysia Energy Centre says the house has two meter systems, a normal one which monitors the electricity usage from Tenaga Nasional Bhd (TNB) and a second meter which tracks the amount of electricity generated.
“The meter reader who comes monthly will record the units of electricity used from the TNB meter and from the second meter, the amount of electricity generated.
“The 4 KW panels fitted onto the roof will generate sufficient electricity for four units of 1 HP air conditioner, to be run for between six and seven hours.
“This means that the homeowner will not need to pay for the electricity that these four air conditioners consumed, to put it simplistically. Generally, the amount of energy generated is smaller than the amount consumed,” says Ahmad Hadri.
He says energy is only generated during the day. It is used and not stored. At 4 KW, the power capacity is small and the energy generated will be consumed by his neighbours. It will not travel beyond the substation.
“The important thing is, from the consumer’s point of view, it cuts down energy usage and reduces his electricity bill and retro-fitted panels enhance the value of the property. From TNB’s perspective, although the power generated is small, it is derived from the source of consumption and used in the vicinity, thereby, does not overload the system,” says Ahmad Hadri. He says the panels have a warranty of 25 years but the system can work longer than that.
Says the home owner: “I am very environment-conscious and I believe in a renewable source of energy, costly though it may be.
“When I built this place, I also did not cut into the slopes; instead the entire structure hugs the terrain. It is not good to cut the slopes because this blocks the natural passage of water. Water is an element that finds its own way down into the ground. It is a natural element that one cannot control,” he says, adding that he consulted geotechnical expertise before building his house.
“The important thing when building on slopes is the foundation. That which cannot be seen – in this case a strong foundation - is more than important than that which can be seen.”

Tuesday, August 14, 2007

Putrajaya Perdana carving niche in energy efficiency

GREEN is the way to go and Putrajaya Perdana Bhd is heading in that direction to offer sustainable living for the future.
The construction and property development company intends to carve a niche in designing and constructing energy-efficient buildings.
Subsidiary Putra Perdana Development Sdn Bhd senior general manager Mak Hong Seng said the company was very focused on this area of business.
“We regard this (energy-efficient construction) as a growth platform and there is potential,” he told StarBiz.
There seem to be many reasons supporting the construction of energy-efficient or green buildings.
Mak said there was more urgency to address global warming caused by the emission of greenhouse gases. Besides that, over half of the electricity used by the developed world was consumed by buildings.
Locally, the Energy, Water and Communication Ministry and the Housing and Local Government Ministry have been working together to include an energy saving requirement in the country’s Uniform Building By-Laws.
Mak said the updated MS1525:2006 (also known as Code of Practice on Energy Efficiency and Renewable Energy for Non-Residential Buildings) was expected to be incorporated into the by-laws this year.
“As the requirement is not enforced yet, it is currently done on a voluntary basis.
“The aim is to table it in Parliament this year and once enforced, it will cover all buildings, except residential ones,” he added.
Energy-efficient buildings are designed, constructed or retrofitted, operated and maintained in a manner that reduce the use of energy without constraining creativity, building function nor the comfort and productivity of the occupants with appropriate regard for cost construction.
Mak pointed out that the potential of the business was not merely in constructing new green buildings but also in retrofitting old or existing buildings.
“Retrofitting is a lucrative business especially for buildings that are not energy-efficient. We can identify areas to reduce energy consumption,” he said, adding that the retrofit cost would be offset by the amount in energy savings later.
Constructing a building with energy-efficient features usually costs 10% more as opposed to the conventional method.
However, Mak said in the long-run, cost savings from energy usage would be far more beneficial for an energy-efficient building.
“We need economies of scale. This is a chicken-and-egg situation. Products such as solar panels are expensive as a lot of money used in research is not recouped, thus limiting mass production for a small market. The price should have dropped but demand in Europe suddenly surged and exceeded supply,” he said.
Although it is not cost effective to implement energy-efficient features in residential homes, Putrajaya Perdana plans to embark on building such homes in Putrajaya.
“Some developers, although conscious of the environment, have to look at their bottomline too. So, energy-efficient homes have to be marketed from a lifestyle perspective for it to be accepted,” Mak said.
Some of the energy-efficient buildings in Malaysia include Menara Mesiniaga, the Securities Commission building and Energy, Water and Communications building (a low energy office constructed by Putrajaya Perdana).
Putrajaya Perdana is currently constructing the Pusat Tenaga Malaysia building (a zero energy office) in Bangi and the Energy Commission headquarters in Putrajaya.
Mak said the company’s orderbook stood at RM1.2bil.
“We are constantly bidding for more projects. We are prospecting for overseas projects but the situation is not as rosy as people perceive it to be.
“We are quite busy locally and will go abroad only if there are good or very big projects, (post by Rosehanizar mohd Radzi and Aida Husna

Monday, August 13, 2007

Chernobyl: No People But A Thriving Ecosystem


When the Chernobyl nuclear reactor melted down in 1986, scores of people died, many more became ill with acute radiation sickness, and 135,000 people were evacuated. The blast spread more than 200 times the radioactivity of the bombs that were dropped on Hiroshima and Nagasaki combined. The prognosis for Chernobyl and its environs – succinctly dubbed by the Soviets as the "Zone of Alienation" – was grim. But surprisingly, Chernobyl’s surrounding flora and fauna have flourished remarkably. In Wormwood Forest: A Natural History of Chernobyl (October 2005, Joseph Henry Press), author Mary Mycio vividly describes an extraordinary – and at times unearthly – new ecosystem that is flourishing in this no-man’s land, where radiation levels are too intense for people to live.
In 1986, people were already overwrought as a result of the tense and relentless brinkmanship presented on the nightly news in an era when two superpowers existed. As Martin Amis wrote: “Of course, the mid-to-late Eighties was one of the warmer phases of the Cold War: the time of the Reagan build-up, or spend-up; ‘the evil empire’; Star Wars (‘the force was with us’). Gorbachev had yet to show his hand, and it was hereabouts that Reagan accused the Russian language of having no word for détente.” The threat of nuclear war always seemed imminent and our anxiousness was further heightened by the unsettling predictions of what would occur should a nuclear exchange eventuate.
Popular culture ensured that apocalyptic wasteland scenarios were welded in the public psyche. So when Chernobyl melted down, it was no surprise that the world’s media painted a grim picture. As a reflection of that time, Mycio recalls how a friend called her up and exclaimed: "A nuclear bomb exploded in Ukraine!" Chernobyl may not have been the nuclear apocalypse that we were all waiting for, but it may as well have been. We were all obviously prepared for the worst.

As Mycio says, the very word “Chernobyl” has become a synonym for “horrific disaster,” conjuring the frightful radioactive deserts that form the landscapes of Atomic Age science fiction and resonate deeply in modern imaginations haunted by the specter of nuclear war. Mary Mycio’s first assumptions prior to visiting the Zone were probably not too dissimilar from anybody else asked to speculate on the disaster. “Whenever I thought about the irradiated lands 50 miles north of Kiev, it was like contemplating a black hole. All I could picture was a dead zone, like a giant parking lot paved with asphalt or a barren desert of dust and ash where nothing could grow and nothing living could survive without protective gear. Only gloomy shades of black and gray colored my mental images,” writes Mycio.
But Wormwood Forest tells an astonishing tale that while tragic, is in many respects uplifting. The book’s important and remarkable observations come at a high price, but the Chernobyl disaster clearly demonstrates what happens to the environment when humans are not present. “Though Chernobyl is widely considered the worst environmental disaster in history, the Zone’s evacuation has – paradoxically – allowed nature to flourish. Nature barely notices radiation – at least the type and levels of radiation Chernobyl released. Human activities are far more damaging. In a way, we are the environmental disaster,” says Mycio. Ten years after the disaster, Mycio discovered a wilderness teeming with large animals, even more than before the nuclear disaster, with many of them members of rare and endangered species. Like the forests, fields and swamps of this burgeoning wilderness, everything is radioactive, and will be for the next 400,000 years. Packed into the muscles and bones of every animal inhabitant is Cesium-137 and strontium-90 respectively. But, quite astonishingly, they are thriving. Chernobyl’s flourishing new ecosystem is: “one of the first examples of how, in the absence of human intervention, nature in the Zone could recover its balance – even in the face of radioactive: “ghost towns and villages [that] stand in tragic testimony to the devastating effects of technology gone awry,” adds Mycio.
Mycio, originally from Long Island, earned a bachelor’s degree in biology from Hunter College and a law degree from New York University in 1984. While working toward her degree, Mycio also spent a number of years in the East Village of New York, at the heart of the East Coast Ukrainian community, promoting Ukrainian affairs and issues. While working as a freelance journalist, Mycio felt she needed to write a book that dealt specifically with a Ukrainian theme. Mycio recently told The Ukrainian Weekly that after the Chernobyl disaster occurred, she became fixated on collecting as much information on the disaster as she possibly could in the hope of writing a book that exposed the criminal negligence of the Soviet government. However, the book was to become something even more fascinating and useful than a railing against the machinations of the Soviet government. “What I tried to do was weave personal travels with lyrical explanations of the natural history and science of Chernobyl. It’s the story of my travels in a radioactive wilderness.”

As it happens, Mycio’s book release coincides with a 600 page Chernobyl Forum Report that was released in early September. The Forum is made up of 8 United Nations agencies, including the International Atomic Energy Agency (IAEA), World Health Organization (WHO), United Nations Development Program (UNDP), Food and Agriculture Organization (FAO), United Nations Environment Program (UNEP), United Nations Office for the Coordination of Humanitarian Affairs (UN-OCHA), United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the World Bank, as well as the governments of Belarus, Russia and Ukraine. The report states that a total of up to four thousand people could eventually die of radiation exposure from the 1986 Chernobyl nuclear power plant disaster. This figure represents a massive departure from the original predictions made that suggested anywhere up to hundreds-of-thousands of fatalities. As of mid-2005 fewer than 50 deaths had been directly attributed to radiation from the disaster, almost all being highly exposed rescue workers, many who died within months of the accident but others who died as late as 2004, the report says. The report also notes that while 4,000 cases of thyroid cancer, mainly in children and adolescents at the time of the accident, have resulted from the accident's contamination, the survival rate among such cancer victims, judging from experience in Belarus, has been almost 99 percent.
According to The Ukrainian Weekly, the Chernobyl Forum report has drawn much criticism from groups in the Ukraine. Alexander Kuzma, executive director of the Children of Chernobyl Relief and Development Fund, says the casualty figures are “dubious, at best.” Mycio can understand the frustration felt by such individuals, who she claims have had their concerns marginalized for years. Mycio told The Ukrainian Weekly that while there was nothing wrong with the environmental report, the predicted health effects are somewhat more controversial. “They based their prediction of future cancer on the people they studied, but they didn’t study all the people who were affected,” she pointed out. Mycio claims that there are about 1 million considered “highly affected” by Chernobyl, but the Chernobyl Forum only examined 600,000 of them, while ignoring 400,000. “They’re making conclusions based on a limited, incomplete population,” Mycio said. She also adds that the report states that there have been no increases in solid cancer tumors as a result of Chernobyl, yet there haven’t been any epidemiological studies of these tumors. “That’s logically incorrect,” states Mycio. “Since there are no epidemiological studies on the changes in the rate of solid tumors, it’s impossible to make any conclusions.” Despite these concerns, however, Mycio believes that to some extent the Chernobyl case in regard to fatalities has been exaggerated.
The Chernobyl disaster also intersects with a number of other present day worries, such as our dependence on fossil fuels in spite of many scientists claiming that the Earth’s once bountiful reserves have entered their twilight years. Not to mention the effects of global warming that will continue to linger as a legacy of our longer than necessary dalliance with fossil fuels. Having spent a considerable amount of time researching and writing on the effects of the Chernobyl disaster, Mycio’s thinking on these important issues has been transformed in fundamental ways. “For the record, I have gone from adamant opponent of nuclear energy to ambivalent supporter – at least for giving a window of time for reducing our dependence on fossil fuels while pursuing research on alternative energy sources,” says Mycio. She explains that: “Initially, the disaster made me oppose nuclear energy. In 1986 that was a painless position to hold, because the price of American dependence on foreign oil had not yet become two Iraq wars, the second of which still has undetermined costs and consequences. Nor had I yet moved to Ukraine, whose complete dependence on Russian fossil fuels seriously compromised the young state’s political independence. It was also before I could feel the real evidence of global warming on my own skin.”
Many people may find it unbelievable that Chernobyl’s story can go from worst-ever-environmental-disaster-in-history, to flourishing eco wilderness, twenty odd years later. Mycio states emphatically that she has never been approached by anyone looking to influence her assessment of the Chernobyl situation. An apologist she is not. The book is as much about the resilience and tenacity of a woman eager to get at the truth of something close to her heart, as it is about the resilience of nature itself in the face of what we assume to be insurmountable odds. As Mycio says: “The extraordinary and unexpected fate of the evacuated ‘Zone of Alienation’ around Chernobyl provides only a part of the answer. I hope that the rest will form in the mind of the reader after joining me on my journeys through the fascinating, beautiful – and radioactive – Wormwood Forest.”