Sunday, September 30, 2007

PM : Renewable Energy


KUDAT: Use the forces of nature to harness alternative and renewable energy for villagers, said the Prime Minister. Noting that sunlight, wind and water were plentiful in remote areas, Datuk Seri Abdullah Ahmad Badawi said it only made sense to use them to generate electricity for rural communities. Launching the country's first High Impact Rural Development Programme in northern Pulau Banggi, some 300km from Kota Kinabalu yesterday, Abdullah said conventional power generation systems for rural communities were traditionally costly. First of its kind: Abdullah, his wife Datin Seri Jeanne Abdullah and Sabah Chief Minister Datuk Musa Aman (right) looking at a model of the agripolitan project site in Pulau Banggi on Saturday."Rural electrification is too expensive," he said, adding that generating power using solar cells and wind turbines in remote locations was viable in the face of escalating diesel and petrol prices. He told reporters later that although Malaysia would have to import such equipment for now, the country has the capability of developing its own technology as there were already plants producing solar cells in the country. Abdullah said he was pleased that the RM167mil agripolitan scheme on the 440sq km island was the nation's first high impact rural development programme incorporating hybrid solar power generation. Noting that a component of the scheme was the setting up of 4,000ha of rubber plantations for the hardcore poor on the island, he said other agriculture-related activities should also be emphasised. The Prime Minister said villagers should not measure development just by the number of industries established in their localities. "Do not look down on agriculture," said Abdullah, adding that the Banggi islanders' involvement in diverse activities including tourism and aquaculture through the scheme would serve as an example of Malaysia's innovative approach in tackling rural poverty.

Thursday, September 27, 2007

UPACARA PERASMIAN PELANCARAN LOJI RINTIS DIESEL MINYAK KELAPA SAWIT

Yang Berhormat Dato' Paul Leong, Menteri Perusahaan Utama; Yang Berhormat Menteri-Menteri; Yang Berbahagia Tan Sri Anuar, Ketua Pengarah PORIM; Tuan-Tuan dan Puan-Puan sekalian,

Saya ingin merakamkan setinggi penghargaan kepada PORIM kerana memberi penghormatan kepada saya untuk melancarkan Loji Rintis Diesel Minyak Kelapa Sawit ini. Sebagai loji rintis yang pertama di dunia yang mengeluarkan diesel minyak kelapa sawit sebagai bahan bakar untuk tenaga, ianya meletakkan Malaysia di mata dunia sebagai perintis dalam bidang penerokaan, pengeluaran dan penggunaan minyak kelapa sawit sebagai sumber tenaga.

2. Loji yang berharga $2.9 juta ini berupaya mengeluarkan sebanyak 3,000 tan diesel minyak kelapa sawit, yang dikenali sebagai methyl ester, setahun secara berterusan. Keseluruhan projek ini dalam masa 2 tahun akan datang akan menelan belanja sebanyak $11.7 juta.

3. Tidak syak lagi bahawa perasmian loji ini memberi petanda baik kepada pembangunan Malaysia. Ia bukan sahaja kerana negara telah menempa satu sejarah dalam kemajuan penyelidikan dan pembangunan atau 'research and development', tetapi juga memberi implikasi yang besar kepada program perindustrian, ketahanan nasional dan kemajuan ekonomi negara pada keseluruhannya.

4. Adalah dianggarkan bahawa simpanan sumber petroleum mentah di negara ini akan kehabisan dalam masa 20 tahun lagi. Jika pada masa itu bekalan minyak dunia terganggu atau terputus, negara akan mengalami kesulitan besar. Justeru itu kita harus bersedia dengan sumber tenaga gantian yang terdapat di dalam negara kita.

5. Diesel minyak kelapa sawit nampaknya memenuhi ciri-ciri ini. Ia sesuai untuk dijadikan bahan tenaga gantian dari sumber-sumber yang boleh diperbaharui terutama dalam jangka panjang. Kajian-kajian yang dijalankan menunjukkan bahawa bahan diesel ini mempunyai skop dan berpotensi untuk digunakan secara komersial. Penilaian ke atas diesel minyak kelapa sawit pada enjin kenderaan dan enjin yang tidak bergerak telah memberi hasil yang menggalakkan dan ciri-cirinya adalah setanding dengan diesel petroleum.

6. Ujian awalan ke atas beberapa buah teksi dan kenderaan PORIM yang meliputi semua aspek teknikal dan prestasi memberi petanda-petanda baik dan menyakinkan untuk digunakan sebagai bahan pembakar. Di antara hasil-hasil yang menggalakkan ialah keluaran asap eksos yang berkurangan, jika dibandiangkan dengan diesel biasa. Satu implikasi ke atas alam sekitar kita ialah ia akan mengurangkan peningkatan lapisan karbon dioksida di udara yang boleh menyebabkan kenaikan suhu hawa dan pencemaran alam sekitar.

7. Saya difahamkan bahawa satu lagi kebaikan ialah enjin-enjin diesel yang sedia ada tidak perlu diubahsuai untuk menggunakan diesel minyak kelapa sawit. Pemandu-pemandu teksi yang terlibat dalam ujian ini telah mengesahkan bahawa mereka tidak mengalami apa jua kemerosotan kuasa enjin yang bermakna pembakaran minyak adalah lebih efisien dari diesel petroleum biasa. Ini ialah kerana diesel minyak kelapa sawit mempunyai nilai 'cetane' dan 'flash point' yang lebih tinggi dari diesel petroleum. Di samping itu tidak terdapat peningkatan dalam endapan karbon di dalam enjin seperti yang berlaku dengan diesel petroleum biasa.

8. Berikutan dari kejayaan awal ini, saya difahamkan bahawa satu ujian luar secara lasak yang melibatkan 200 enjin diesel dan kenderaan akan dilaksanakan. Ujian di atas kenderaan akan meliputi jarak sejauh 300,000 kilometer untuk tempoh selama 2 tahun selepas loji rintis beroperasi. Saya berasa gembira diberitahu bahawa pembuat-pembuat enjin yang terkenal dan agen-agen mereka telah tampil ke hadapan dan bekerjasama untuk mengambil bahagian dalam ujian lasak ini. Sambutan yang menggalakkan ini menunjukkan bahawa mereka berkeyakinan dan menaruh harapan tinggi di atas kejayaan dan potensi diesel minyak kelapa sawit.

9. Tujuan ujian secara besar-besaran ini ialah untuk menilai dengan lebih mendalam lagi kesan-kesan methyl ester ke atas enjin dan minyak pelincir. Saya berharap pakar-pakar PORIM akan dapat mengatasi apa-apa masalah yang timbul. Sekiranya ujian didapati positif, adalah diharapkan pihak pembuat-pembuat enjin akan memberi jaminan ke atas methyl ester sebagai salah satu bahan bakar bagi enjin-enjin diesel mereka.

10. Sehubungan dengan projek diesel minyak kelapa sawit ini, satu langkah lagi yang telah diambil oleh PORIM ialah untuk menggunakan minyak sawit mentah terus oleh enjin yang direka khas. Enjin yang direka oleh Elko Lizenza dari Jerman Barat boleh menggunakan sama ada diesel petroleum biasa atau minyak sayur. Memandangkan bahawa terdapat minyak kelapa sawit dikeluarkan dengan banyaknya oleh negara ini, PORIM, Mitsui dan Elko telah membuat kajian di Malaysia untuk menilai kesesuaian enjin ini dengan minyak kelapa sawit mentah dan juga diesel minyak kelapa sawit. Kita berharap gabungan teknologi Malaysia, Jepun dan Jerman Barat dapat digemblingkan untuk mencari penyelesaian kepada masalah-masalah tenaga dan persekitaran.

Tuan-tuan dan puan-puan,

11. Sebagai pengeluar dan pengeksport utama minyak kelapa sawit dunia, kejayaan projek diesel minyak kelapa sawit ini akan mengharumkan lagi nama Malaysia sebagai perintis dalam penggunaan minyak kelapa sawit sebagai sumber tenaga baru. Ada pendapat yang menyebut tentang ladang tenaga atau 'energy farm' di mana minyak kelapa sawit ditukar kepada methyl ester untuk tenaga dan digunakan sebagai pengganti diesel. Berdasarkan kepada penilaian awal, penggunaan minyak kelapa sawit sebagai bahan bakar adalah 'viable'. Pada masa ini 18% dari jumlah tenaga yang digunakan oleh industri pengangkutan di Malaysia ialah dari diesel petroleum. Oleh itu minyak kelapa sawit boleh memainkan peranan yang lebih luas di negara ini, terutama di waktu harganya rendah akibat persaingan oleh lain-lain minyak makanan.

12. Saya difahamkan bahawa kajian yang telah dibuat oleh PORIM telah mengenalpasti beberapa bahan sampingan seperti glycerol dan komponen-komponen kecil dapat dihasilkan. Bahan-bahan ini amat berguna dan bernilai tinggi. Penggunaan dan penilaiannya sedang dijalankan dan akan merupakan 'spin off' yang penting dari projek diesel minyak kelapa sawit. Semua ini memberi gambaran yang jelas kepada kita bahawa projek diesel minyak kelapa sawit akan menjadi satu kenyataan.

13. Ekoran dari ini terdapat peluang yang luas dalam bidang-bidang pengeluaran barangan 'downstream' berasaskan minyak kelapa sawit yang dapat memberikan nilai tambahan. Misalnya tocopherol yang dijumpai dalam pati asid lemak sawit boleh mengeluarkan Vitamin E secara komersial, iaitu vitamin yang penting bagi tubuh manusia. Adalah dianggarkan bahawa berdasarkan kepada pengeluaran dari pati asid lemak kelapa sawit negara pada tahun ini, Vitamin E yang bernilai sebanyak $64 juta boleh dihasilkan.

14. Oleh itu saya ingin menyeru semua pihak terutama ajensi-ajensi R&D, baik di sektor awam mahupun swasta, supaya memberi tumpuan penyelidikan yang lebih untuk mencipta teknologi-teknologi baru supaya kita dapat mengambil seberapa banyak faedah daripada bahan mentah keluaran tempatan. Kegiatan R&D adalah penting jika kita mahu mengamalkan konsep tanpa pembaziran atau 'zero waste' ke atas hasil dan keluaran kelapa sawit dan minyak kelapa sawit.

15. Research and Development adalah satu usaha yang penting untuk mengeksploitasi sepenuhnya sesuatu bahan. Sehingga kini Malaysia memperuntukkan cuma 0.64% dari Keluaran Negara Kasar atau GNP untuk R&D. Ini amatlah rendah berbanding dengan negara-negara maju. Justeru itu kajian hendaklah dibuat untuk meningkatkan peruntukan untuk R&D di Malaysia.

16. Di sini ingin saya bercakap sedikit berkenaan dengan pemindahan teknologi. Kita tidak berhenti-henti mendengar tentang keengganan orang asing memindah teknologi kepada kita. Tetapi kita tahu bahawa banyak negara membangun yang sudah mendapat taraf negara-negara perindustrian baru atau Newly Industrialising Countries telah dapat menguasai teknologi baru. Kenapakah mereka boleh, tetapi kita tidak boleh, sedangkan punca teknologi adalah sama?

17. Jawabnya ialah kita menunggu untuk diserah bulat-bulat teknologi asing. Kita tidak mengejar teknologi. Kita menganggap proses penyerahan teknologi ini adalah tanggungjawab orang lain dan bukan kita.

18. Sebab itu walaupun kita sudah lama mengeluarkan sabun dengan cap yang terkenal dari kelapa sawit, seluar jeans cap yang terkenal di dunia, radio dan calculator kecil, kita cuma tahu memasang komponen sahaja. Setengah para jurutera kita tidak pun tahu meneliti dan mengkaji 'circuit board' supaya dapat mengeluarkan sendiri radio dan calculator. Sebaliknya para jurutera di beberapa negara seperti Korea, Jepun dan Taiwan akan faham apabila melihat sahaja 'circuit board' dan lain-lain. Tidak lama dari itu melalui 'reverse-engineering', mereka dapat meniru dan kemudian merekabentuk barangan mereka sendiri. Kebanyakan dari jurutera kita lebih suka menjadi pentadbir dengan pangkat yang tinggi daripada mencipta sesuatu yang diminati oleh orang ramai.

Tuan-tuan dan puan-puan,

19. Dengan pelancaran loji rintis diesel minyak kelapa sawit pada hari ini, ujian selanjutnya akan dapat dilaksanakan untuk menguji keupayaan proses yang digunakan untuk mengeluarkan diesel minyak kelapa sawit secara komersial di samping menjalankan kajian kemungkinan serta penilaian secara mendalam tentang kesesuaian bahan ini dijadikan sebagai bahan bakar. Kajian-kajian ini dijangka dapat diselesaikan dalam tempoh dua tahun.

20. Kejayaan kita mencipta proses dan kaedah menukarkan minyak kelapa sawit kepada diesel, memberi kita satu contoh bahawa kemampuan Malaysia dalam bidang sains dan teknologi tidaklah terlalu ketinggalan. Dalam hubungan ini, saya berbangga mendapat tahu bahawa PORIM telah mengemukakan permohonan untuk mendapatkan 2 'patent' di Britain. Kejayaan-kejayaan seperti ini apabila dimajukan sepenuhnya akan menjadi 'intellectual property' negara kita. Saya berharap banyak lagi teknologi baru ciptaan tempatan akan dapat dihasilkan supaya hasrat Kerajaan untuk muncul sebagai sebuah negara perindustrian menjadi kenyataan dalam masa yang sesingkat-singkatnya.

21. Dengan harapan tersebut, saya dengan sukacitanya melancarkan Loji Rintis Diesel Minyak Kelapa Sawit serta Projek Enjin Elko ini dengan rasminya.


Sumber : Pejabat Perdana Menteri

Wind, sun and diesel



Villagers on an East Coast island are shrinking their carbon footprints by buying green energy.

THE two giant “fans” rise grandly from the highest point of Pulau Perhentian Kecil, Terengganu, their manmade presence in sharp contrast to the lush greenery. Up close, the two white edifices are even more awe-inspiring, their three blades cutting through the air with ominous resonance.

The fans are power-producing wind turbines – the first in the country – and are part of a unique solar-wind-diesel hybrid power generation system. Installed by Tenaga Nasional Berhad (TNB) and allegedly the first of its kind in Asia, the hybrid system has a combined capacity of 650 kilowatts (kW), and is made up of two 100kW wind turbines, 100kW worth of solar panels as well as two diesel generators capable of 200 and 150kW respectively.

It also includes a battery that can store up to 480kWh (kilowatt hour) of power.

TNB Energy Services managing director Rahimuddin Baharudin says the hybrid system will cut the cost of generating power on the island by almost 40% from the previous diesel generator system.

“Before TNB came to the island, the villagers relied on their own small generators. In 2002, TNB installed a diesel generator that powered the island for 24 hours. However, with rising diesel prices, we had to find a way to reduce the cost of generating power. One of the ways is to use renewable energy generated by wind and sun.”

At this stage, the hybrid system is not meant to replace the diesel generators but to minimise the usage of diesel as a source of electricity. The combination of solar panels, wind turbines and diesel generator will ensure a continuous flow of electricity no matter what the weather conditions are.

“In the day, when we have less wind, the solar panels will cover the extra load. At night, the wind turbines will be the ones generating more power. If the solar panels and wind turbines do not create enough power, the diesel generator will (automatically run to) compensate for the deficiency.”

Rahimuddin says the system has worked well so far, to the extent of generating excess energy that has to be burned off with a heater. For now, the hybrid scheme only provides electricity for Kampung Perhentian on Pulau Perhentian Kecil, and not the dozens of resorts that pepper the sandy shores of neighbouring Pulau Perhentian Besar. The reason? The project comes under the Government’s rural electrification project and is meant for domestic usage only.

Rahimuddin reckons that it is technically possible for the resorts to tap the renewable electricity since there is now excess power. The resorts currently run their own diesel generators.

Project inception

Rahimuddin explains that Terengganu Mentri Besar Datuk Seri Idris Jusoh was eager to have a renewable energy system on the island after learning about TNB’s solar hybrid schemes in places such as the Pemanggil, Aur, Sibu, Besar and Tinggi islands off Johor, and Kampung Denai in Rompin, Pahang.

"He has also seen wind farms in Europe and asked us about the possibility of building wind turbines on Pulau Kapas and Pulau Perhentian. At the time, we were aware that Pulau Perhentian has plenty of wind but whether we could harness that energy was a different matter altogether.

“We had done a study in the area from 1993 to 1999 using a wind monitoring station. But when we started researching this project, we found that the data was outdated. The global climate has changed so much, thanks to global warming, that sometimes we get wind at the wrong times.”

TNB took six months to reanalyse the data and design the system, and another six months to build it. The State Government, TNB and Federal Government each funded one-third of the RM12.76mil cost.

The turbines are designed to harness the winds on Pulau Perhentian as efficiently as possible. Sensors on the structures analyse wind directions and speeds, and the turbines will automatically turn to face the wind.

The entire system is remote-controlled via the Global System for Mobile communications (GSM) satellite from TNB’s headquarters in Kuala Lumpur. A few employees are onsite to conduct maintenance on the diesel generator.

“Most of our solar hybrid stations in Johor and Pahang are unmanned. But this particular system needs someone to look after the diesel generator at all times,” says Rahimuddin.

Installation of the wind turbines by contractor Wazlina, was planned carefully to minimise the environmental impact on the island, according to Rahimuddin. “We were given conditions by a committee comprising relevant authorities like Marine Department and Department of Environment.”

Wazlina environmental consultant Shan Suleiman says although the worksite was considered only a “small footprint” on the island, they minimised the impact by not cutting trees unnecessarily, building silt traps and monitoring siltation caused by earthworks.

However, bringing equipment and materials to the island posed problems. “The transportation was controlled by the Marine Department. Whenever we had a barge coming in, we had to report to them and could only bring the barge in at certain high tides,” says Wazlina director Mohd Safian Dato’ Salleh. “In the end, it cost us almost three times the normal amount to bring in the equipment and materials from the mainland.”

Despite the higher cost of producing the renewable energy, Pulau Perhentian Kecil villagers are still charged the same electricity tariffs as on the mainland. This differs from the recently launched solar-hybrid system on nearby Pulau Kapas. There, TNB merely built the system. A state-appointed body sells the electricity to resorts at whatever cost they see fit. “The electricity is sold according to the production cost, plus the profits for the body running it,” explains Rahimuddin.

Tuesday, September 25, 2007

200 negara setuju hapus bahan kimia ancam ozon

MONTREAL 23 Sept. – Hampir 200 negara telah menyatakan persetujuan untuk mempercepatkan penghapusan bahan kimia yang mengancam ozon dan memburukkan lagi pemanasan global, lapor Program Alam Sekitar Pertubuhan Bangsa-Bangsa Bersatu (UNEP), semalam.
Pengarah UNEP, Achim Steiner menandatangani perjanjian tersebut dengan ketua-ketua kerajaan terbabit bagi pengharaman pengeluaran bahan kimia hydrochlorofluorocarbons (HCFC).
Pengharaman itu merupakan satu isyarat mustahak dalam usaha memperlahankan perubahan iklim dan pemanasan global.
“Ia barangkali perkembangan yang paling penting dalam proses rundingan persekitaran antarabangsa sekurang-kurangnya untuk tempoh lima atau enam tahun ini.
“Kerajaan mempunyai peluang yang cerah untuk bekerjasama dalam menangani masalah berkembar iaitu perubahan iklim di samping melindungi lapisan ozon yang kian menipis,” katanya.
Perjanjian itu dicapai sewaktu para pemimpin dunia bersiap sedia menghadiri Perhimpunan Agung Pertubuhan Bangsa-Bangsa Bersatu (UNGA) yang antara lain cuba membentuk perjanjian sejagat dalam menyelesaikan masalah gas rumah hijau.
Menerusi persetujuan itu, negara maju akan melalui fasa tanpa menghasilkan HCFC pada 2020 manakala negara membangun bermula pada 2030.
Tempoh itu adalah 10 tahun lebih awal daripada perjanjian terdahulu.
Perjanjian tersebut telah merombak jadual yang dibuat pada 1987 di bawah Protokol Montreal, bertujuan untuk menyingkirkan penggunaan HCFC dan bahan kimia berkaitan yang selalu dijumpai dalam peti sejuk dan penyembur rambut.
– AFP

Monday, September 24, 2007

Solar Power: Advantages and Disadvantages

There are many advantages of solar energy. Just consider the advantages of solar energy over that of oil:

· Solar energy is a renewable resource. Although we cannot utilize the power of the sun at night or on stormy, cloudy days, etc., we can count on the sun being there the next day, ready to give us more energy and light. As long as we have the sun, we can have solar energy (and on the day that we no longer have the sun, you can believe that we will no longer have ourselves, either).

· Oil, on the other hand, is not renewable. Once it is gone, it is gone. Yes, we may find another source to tap, but that source may run out, as well.

· Solar cells are totally silent. They can extract energy from the sun without making a peep. Now imagine the noise that the giant machines used to drill for and pump oil make!

· Solar energy is non-polluting. Of all advantages of solar energy over that of oil, this is, perhaps, the most important. The burning of oil releases carbon dioxide and other greenhouse gases and carcinogens into the air.

· Solar cells require very little maintenance (they have no moving parts that will need to be fixed), and they last a long time.

· Although solar panels or solar lights, etc., may be expensive to buy at the onset, you can save money in the long run. After all, you do not have to pay for energy from the sun. On the other hand, all of us are aware of the rising cost of oil.

· Solar powered lights and other solar powered products are also very easy to install. You do not even need to worry about wires.

As you can see, there are many advantages of solar energy. The advantages of solar energy range from benefiting your pocketbook to benefiting the environment. There are actually only a few features of solar energy that can be considered disadvantages.

Here are the disadvantages of solar energy:

· Solar cells/panels, etc. can be very expensive.

· Solar power cannot be created at night.

As you can see the advantages of solar energy create a much longer list that the disadvantages, and the disadvantages are things that can be improved as technology improves.

Anne Clarke writes numerous articles for websites on gardening, parenting, the enviornment, fashion, and home decor. Her background includes teaching and gardening.

The biomass way for new energy, cleaner environment

KUALA LUMPUR - The much-touted biomass, an inevitable organic waste which can be converted into energy and other commercial products, has yet to make any significant contribution to a cleaner environment in the country.

And in the meantime, the tonnes upon tonnes of biowaste from the country's 3.6 million hectares of oil palm - fronds, trunks and empty fruit bunches - are going to waste, adding more carbon dioxide to the atmosphere and hastening the feared "greenhouse" effect.

Director-General of Malaysian Palm Oil Board (MPOB) Datuk Dr Yusof Basiron said any burning of the oil palm waste would release carbon dioxide into the air.

But if the waste are converted into biomass and tapped as an energy source, the level of carbon in the atmosphere would be maintained if not reduced.

This is the opposite of fossil fuel sources which can only add more of the gas to hasten the greenhouse effect, he explained.

In the Malaysian context, the main supply of biomass is the oil palm plantation covering an area of 3.6 million hectares, producing over 35 million tonnes of biomass in the form of trunks, fronds and empty fruit bunches (EFB) a year.

During the replanting, the trees yield some 25 million tonnes of the trunks annually.

The current practice of disposing the oil palm waste is to dump them back to the field or to burn them - both ways give a negative impact on the environment.

With this in mind, Dr Yusof said the government had come up with the idea of producing five percent of the country's energy in 2005 from biomass, specifically oil palm waste.

"We don't want to over-exploit fossil fuel, but start using the available raw material and renewable resource," he said, while admitting that it is a big challenge to the government to get the people to use less fossil fuels.

This is because Malaysia has a lot of raw materials and energy sources such as petroleum, gas, timber and rubberwood, which put a brake on the use of oil palm biomass.

"People are still comfortable with the current raw material availability from other sources," he explained.

Dr Yusof said the importance of oil palm biomass would emerge when the shift in raw material supply takes place.

"Rubberwood which is the main source now is depleting, so the shift would be towards oil palm biomass. This natural shift would take some time to occur. This is the reason why we want the industry to respond very fast and start commercial exploitation as soon as possible, and not wait for the natural shift," he said.

He said the fact that the government had outlawed the open burning of oil palm waste is a clear message to the industry players to find a profitable use of the waste.

It is up to the industry to maximise revenue by making the biomass in the most efficient and profitable way, he said.

Noting that necessity in the mother of all inventions, he said the low prices of palm oil and lack of income would drive the industry to go for the greater use of oil palm biomass.

He said incentives like rebates, tax exemption and regulations would also induce all sectors, especially big industry players, to employ environment-friendly energy use.

Dr Yusof felt that there is no need for other organic waste when the oil palm sector is the main source of biomass. "It has excess amounts (of biomass) and that should be exploited right now," he argued.

The industry, he said, had to work out on the logistics factor in such a way there would be minimum transporting cost of raw material and finished products.

"The raw materials should be also transported with great efficiency, meaning that they should not transport very crude kind of raw materials because they contain a lot of water," he said.

So, there must be a scheme to allow each mill to have a pre-processing facility to dry the fiber and compact it before it is marketed, said Dr Yusof.

As for funding of these projects, he said a lot of banks such as Bank Industri and even the commercial banks would look at the viability of a project before giving the financial backing.

As far as biomass is concerned, he said it is something very new and the banks need to be fully exposed, especially on the potentials of the industry.

To make things click, he said MPOB had invested RM20 million to RM30 million (on R&D work) in the last 20 years.

MPOB had also been very aggressive to make the biomass industry a success, and had staged various seminars to unfold the potentials of the industry for the players and the banks.

Recently, MPOB jointly organised a two-day seminar on "Oil Palm Biomass: Opportunities for Commercialisation" with Faunhofer Liaison Office, Malaysia and The Chamber of Commerce, Hannover Hildersheim, Lower Saxonia, Germany.

MPOB, he said, has also established a medium density fiberboard (MDF) pilot plant to undertake development work with the objective of gradually replacing rubberwood as a major material for MDF and improving the quality of the MDF produced.

"We are there to help the companies that have problems in shifting from rubberwood to oil palm fibers," he added. - Bernama

Wednesday, September 19, 2007

Minda Pengarang: Dasar guna tenaga lebih komprehensif patut dirangka

SATU mekanisme khas akan diperkenalkan kerajaan bagi membantu golongan miskin, khususnya nelayan sebelum subsidi diesel dimansuhkan. Perdana Menteri, Datuk Seri Abdullah Ahmad Badawi kelmarin berkata, mekanisme itu masih pada peringkat perbincangan dan sedang diperhalusi bagi memastikan tidak timbul sebarang masalah kepada pengguna bahan api berkenaan jika subsidinya dimansuhkan. Kerajaan akan memastikan sebarang keputusan nanti tidak akan menyebabkan nelayan menanggung beban, manakala pihak yang menganggap subsidi itu membuka ruang untuk penyeludupan dan merugikan negara, juga berpuas hati. Kita berharap kajian mendalam itu turut melihat subsidi yang diberikan kepada industri lain kerana jumlah diesel digunakan nelayan tidak sebesar diesel digunakan industri berat. Baru-baru ini, Ahli Majlis Tindakan Ekonomi Negara (MTEN), Prof Datuk Dr Ismail Salleh menyarankan kerajaan memansuhkan subsidi diesel bagi menangani penyelewengan dan penyeludupan bahan api itu yang semakin berleluasa hingga menyebabkan negara mengalami kerugian besar. Bagaimanapun, Kementerian Perdagangan Dalam Negeri dan Hal Ehwal Pengguna (KPDNHEP) menyatakan ia akan meneruskan pemberian subsidi diesel kepada nelayan dan industri berikutan sektor terbabit masih memerlukan bantuan kerajaan bagi meneruskan operasi. Kita berpendapat pihak berkuasa perlu merangka dasar penggunaan tenaga yang lebih kondusif supaya pemberian subsidi kepada industri yang mencatat keuntungan berjuta-juta ringgit setiap tahun itu dapat dihentikan. Dasar yang komprehensif itu harus merangkumi segala aspek berkaitan penggunaan tenaga, termasuk polisi ke arah mendidik rakyat menjimatkan penggunaan tenaga dalam kegiatan seharian. Industri tempatan seharusnya mengambil langkah menjimatkan penggunaan tenaga, sekali gus mengurangkan kos mereka supaya lebih kompetitif di pasaran. Subsidi pula harus dihadkan kepada golongan benar-benar memerlukan seperti nelayan dan petani. Kita percaya jika subsidi kepada industri ini dihentikan, barulah mereka mencari jalan untuk menjimatkan kos supaya lebih berdaya saing. Memang benar sesetengah industri memerlukan bantuan kerajaan pada peringkat permulaan, tetapi kebanyakan industri yang menikmati subsidi sekarang sudah wujud berpuluh-puluh tahun. Jika dulu, mereka mungkin menyediakan banyak peluang pekerjaan kepada rakyat tempatan, tetapi kini jika mereka tidak menggunakan mesin sepenuhnya, mereka mengaji rakyat asing kerana upahnya lebih rendah. Matlamat kerajaan mencapai pembangunan sosioekonomi lebih seimbang sukar dicapai selagi subsidi ini diteruskan. Tahun lalu misalnya, kerajaan meraih penjimatan subsidi RM900 juta selepas menaikkan harga minyak berbanding jangkaan penjimatan RM4.4 bilion. Untuk berapa lama lagi kerajaan terpaksa menanggung beban bagi mengekalkan harga petroleum? Subsidi tidak menggalakkan kecekapan dan pemuliharaan, sekali gus memerlukan penyelesaian. Malangnya setiap kali kerajaan mahu menurunkan subsidi, kalangan industrilah yang membantah dengan pelbagai alasan. Anehnya keadaan sama tidak berlaku di negara lain. Satu perkara yang pasti ialah bekalan sumber minyak dan gas dalam negara semakin habis, malah mungkin lebih cepat daripada tempoh jangkaan jika kadar penggunaan dalam negara terus meningkat. Hakikat Malaysia menjadi pengimport bersih minyak menjelang 2010 tidak dapat dielakkan jika permintaan domestik bagi produk petroleum terus meningkat pada kadar empat peratus setahun. Oleh itu, sementara kita menunggu mekanisme khas dirangka bagi membantu golongan miskin, semua pihak, terutama industri tempatan perlu berusaha mengambil langkah proaktif menjimatkan penggunaan tenaga.

by nurul hidayah sulong

Tuesday, September 11, 2007

Energy efficiency and energy balance of biofuels

Production of biofuels from raw materials requires energy (for farming, transport and conversion to final product as well as the production of fertilizers, pesticides and herbicides). The level of energy expenditure varies by location: more intensive agricultural regimes such as those found in Western countries are more energy intensive. The more machinery is used for farming, the greater the energy expended in the process; developing countries tend to have less intensive agricultural methods. It is possible to produce biomass without incurring large agricultural energy costs: for example, wild-harvesting excess wood from established forests can be done without much energy input. However the yield of biomass from such resources is not consistent or large enough to support biofuel manufacture on a large scale.
The energy balance of a biofuel is determined by the amount of energy put in to the manufacture of fuel compared to the amount of energy released when it is burned in a vehicle. Biofuels tend to require higher energy inputs per unit energy than fossil fuels: oil can be pumped out of the ground and processed more efficiently than biofuels can be grown and processed. However, this is not necessarily a reason to use oil instead of biofuels, nor does it have an impact on the environmental benefits provided by a given biofuel.
Other factors connected to energy balance are a) cost and b) environmental impact. High energy impacts do not necessarily mean that the resulting fuel will be bad for the environment: energy can be derived from renewable resources to power biofuel manufacture.
Energy balance is not necessarily a measure of a good biofuel. Biofuels should be affordable, sustainable, abundant and provide good GHG emissions savings when compared with fossil fuels.
Energy balance/ efficiency of conversion is relevant when considering how best to use a given amount of biomass resources. For example, given limited resources should biomass be converted into heat and power or liquid transport fuels? Looking at energy balance and the efficiency of energy conversion can help to use biomass resources efficiently and with maximum environmental gain.
Studies have been done that calculate energy balances for biofuel production. Some of these show large differences depending on the biomass feedstock used and location. [19]
The energy balance is more favourable for biofuels made from crops grown in subtropical or tropical areas than those made from crops grown in temperate areas [citation needed]. This is largely due to the increased yield of biomass from crops in areas that receive more sunlight.
Life cycle assessments of biofuel production show that under certain circumstances, biofuels produce only limited savings in energy and greenhouse gas emissions. Fertiliser inputs and transportation of biomass across large distances can reduce the GHG savings achieved. The location of biofuel processing plants can be planned to minimise the need for transport, and agricultural regimes can be developed to limit the amount of fertiliser used for biomass production. A European study on the greenhouse gas emissions found that well-to-wheel (WTW) CO2 emissions of biodiesel from seed crops such as rapeseed could be almost as high as fossil diesel. It showed a similar result for bio-ethanol from starch crops, which could have almost as many WTW CO2 emissions as fossil petrol. This study showed that second generation biofuels have far lower WTW CO2 emissions.[20]
Other independent LCA studies show that biofuels save around 50% of the CO2 emissions of the equivalent fossil fuels. This can be increased to 80-90% GHG emissions savings if second generation processes or reduced fertiliser growing regimes are used (Concawe Well to Wheels LCA for biofuels).

Bioenergy from waste

Using waste biomass to produce energy can reduce the use of fossil fuels, reduce greenhouse gas emissions and reduce pollution and waste management problems. A recent publication by the European Union highlighted the potential for waste-derived bioenergy to contribute to the reduction of global warming. The report concluded that 19 million tons of oil equivalent is available from biomass by 2020, 46% from bio-wastes: municipal solid waste (MSW), agricultural residues, farm waste and other biodegradable waste streams.[2][3]

Landfill sites generate gases as the waste buried in them undergoes anaerobic digestion. These gases are known collectively as landfill gas: this can be burned and is a source of renewable energy. Landfill gas (LFG) can be burned either directly for heat or to generate electricity for public consumption. Landfill gas contains approximately 50 percent methane, the same gas that is found in natural gas.

If landfill gas is not harvested, it escapes into the atmosphere: this is not desirable because methane is a greenhouse gas, with more global warming potential than carbon dioxide. [4][5] Over a timespan of 100 years, methane has a global warming potential of 23 relative to CO2. [4] Therefore, during this time, one ton of methane produces the same greenhouse gas (GHG) effect as 23 tons of CO2. When methane burns the formula is CH4 + 2O2 = CO2 + 2H2O. So by harvesting and burning landfill gas, its global warming potential is reduced a factor of 23, in addition to providing energy for heat and power.

PhD Frank Keppler and PhD Thomas Rockmann discovered that living plants also produce methane CH4. [citation needed] The amount of methane produced by living plants is 10 to 100 times greater than that produced by dead plants but does not increase global warming because of the carbon cycle.

Anaerobic digestion can be used as a distinct waste management strategy to reduce the amount of waste sent to landfill and generate methane, or biogas. Any form of biomass can be used in anaerobic digestion and will break down to produce methane, which can be harvested and burned to generate heat, power or to power certain automotive vehicles.
A 3 MW landfill power plant would power 1,900 homes. It would eliminate 6,000 tons per year of methane from getting into the environment. It would eliminate 18,000 tons per year of CO2 from fossil fuel replacement. This is the same as removing 25,000 cars from the road, or planting 36,000 acres (146 km²) of forest, or not using 305,000 barrels of oil per year.
(sharifah norazira)

Bio-Fuels Facts


Bio-Fuels Facts

Ethanol

Q: What is ethanol?
A: Ethanol, also called grain alcohol or ethyl alcohol, can be made from any starch- or sugar-based feedstock. Corn is the most common feedstock used in the United States, whereas sugar cane is the preferred feedstock in Latin America. The energy content of ethanol is approximately two-thirds that of gasoline by volume. For that reason, and because of its higher cost, ethanol is typically used as a gasoline additive. Approximately one out of every eight gallons of gasoline sold in the U.S. contains 8% to 10% ethanol. All reciprocating engine vehicles can use ethanol blends in small quantities (up to 20%, or denoted as E20), and with slight alterations can accommodate ethanol blends as high as 85% (E85). It is also possible to run engines on pure ethanol.

Q: How is ethanol produced?
A: There are two different methods for producing ethanol, both based on breaking down plant matter into simple sugars and starches and then fermenting them to produce alcohol. Ethanol is primarily made through a distilled ethanol process whereby the sugars and starches from the feedstock are boiled and concentrated into grain alcohol (basically "moonshine," although ethanol is denatured to prevent the fuel from being consumed). The process can also use microbe fermentation (with a byproduct of CO2) or a wet-milling procedure that also yields high-fructose corn sweetener. The fermentation process can easily break down simple sugars in the fruits or edible portions of plants; examples of commonly-used feedstocks include corn kernels, sugar cane, milo, cheese whey, and potato waste. New technologies are emerging that can break down the more complex sugars that compose other parts of plants, such as the fibrous stalks, husks, grasses, and wood. Converting these sources of cellulosic and hemicellulosic biomass into ethanol opens up a new avenue for fuel supplies, since this waste biomass is readily available and renewable in large quantities. What are essentially agricultural wastes will soon commonly be converted into a usable energy source.
Q: Pros and cons of ethanol:
Pros: Ethanol reduces levels of carbon monoxide and other toxic air pollutants. The biomass used for ethanol absorbs carbon dioxide (CO2) when it is grown, so it adds no net CO2 to the atmosphere. It can be used to boost the octane in gasoline to prevent engine knocking, and it increases gasoline's lubricity. It also takes only six months to harvest a substantial crop of fuel. Ethanol is an oxygenate that reduces ground-level ozone. Since ethanol can be produced locally, it has the potential to add to the local economy, particularly in the agricultural sector, and help reduce the importation of oil.

Cons: Depending on the ethanol/gasoline blend, ethanol may raise levels of nitrogen oxides produced as gasoline emissions. Because of its lower energy content relative to gasoline, ethanol also reduces mileage per gallon. Corn-based ethanol production is energy intensive, and in some instances uses nearly as much energy to produce (including the energy needed for farming and making fertilizers) than it supplies, although new technologies are improving the efficiency of production.

Biodiesel

Q: What is biodiesel?
A: Biodiesel is a combustible fuel that is physically similar to petroleum diesel but made from natural, renewable sources. As with every transportation and stationary fuel, biodiesel is processed to meet ASTM standards. A blend of 20 percent biodiesel with 80 percent petroleum (B20) can be used in all diesel-burning equipment, including compression-ignition engines and oil heat boilers, without modification. Higher blends, including pure biodiesel, can be used in many engines made after 1994, but slight modifications are necessary.

Q: How is biodiesel produced?
A: Biodiesel, otherwise known as fatty acid alkyl esters, can be made from any vegetable oil or animal fat. In the U.S., roughly half of biodiesel production uses soybean oil, and most of the remaining half is recycled from restaurants' cooking oil. The fats and oils are combined with an alcohol, commonly methanol, and a catalyst, commonly sodium or potassium hydroxide, to produce a chemical reaction giving off fatty acid methyl esters and a glycerol co-product. Many esterification technologies can be used to produce biodiesel; all involve basic fats, an alcohol, and a catalyst.

Q: What are the pros and cons of biodiesel?
Pros: When blended with standard transportation diesel, biodiesel helps to extend the energy capacity of the diesel. Biodiesel can also be used as a home heating oil. Because biodiesel is produced from natural sources, it generally releases as much carbon dioxide as it uses growing. A blend of 20 percent biodiesel will reduce carbon dioxide (CO2) emissions by 15 percent, and adding biodiesel also reduces the amount of particulates (PM), carbon monoxide (CO), and sulfur dioxide (SO2) released as emissions. Biodiesel is less combustible than petroleum, making it safer to store and transport. In addition, if biodiesel spills, it is biodegradable and breaks down roughly four times faster than petroleum diesel.

Cons: Use of biodiesel results in increased levels of harmful nitrogen oxide (NOx) emissions when used in diesel engines, although not usually in residential heating equipment. Also, in and of itself biodiesel releases the same amount of hydrocarbon (or soluble carbon) emissions when burned as regular diesel. Furthermore, pure biodiesel has a high "clouding" point, meaning that liquid biodiesel begins to thicken into a solid at low temperatures. Because of its higher clouding point, biodiesel is more difficult to store and transport in cold climates, which adds to its cost.
Biomass and Biomass Gasification

Q: What is biomass?
A: Biomass is generally made up of woody plant residue and complex starches. The largest percentage of biomass used to create energy is wood, but other bioproducts, such as fast-growing switchgrass, are being investigated as sources of energy. The three largest sources of biomass used for fuel are cellulose, hemicellulose, and lignin. Biomass processing results in the end-products biochemicals, biofuels, and biopower, all of which can be used as fuel sources. Biochemicals involve converting biomass into chemicals to produce electricity; biofuels are biomass converted into liquids for transportation; and biopower is made by either burning biomass directly (as with a wood-burning stove) or converting it into a gaseous fuel to generate electric power. Currently, production of electricity from biomass constitutes 3.3 percent of the United States' energy supply.

Q: What is biomass gasification?
A: Biomass gasification uses a high-temperature process to convert biomass (such as wood pulp) into a synthesis gas (syngas) that consists mainly of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2). The gas can either be used to produce heat or electricity, which can then be used for other purposes (such as production of hydrogen fuel cells), or anaerobic bacteria can be added to the gas to create ethanol and other fuel liquids. One type of gasification process currently being developed for large-scale use by the United States Environmental Protection Agency (EPA) in conjunction with the forest products industry involves black liquor, a biomass byproduct of the timber industry. The gas produced is cycled into a turbine to create heat and electricity, and waste solids are siphoned off for use in the pulping process. The forest products industry is a large producer of cogenerated electricity from wood-derived fuels: it produces 41 percent of the United States' self-generated electricity through cogeneration.

Q: What are the pros and cons of biomass gasification?

Pros: Production of electricity and heat from biomass has the potential for widespread use in the United States, as the gasification process uses many diverse and plentiful feedstocks. Although biomass releases carbon dioxide (CO2) into the atmosphere when combusted, the amount of CO2 released is equal to or less than the amount that the crop absorbs while growing (net emissions of CO2 are zero). Also, production of biomass feedstocks creates jobs in the domestic agricultural sector. In the case of the paper products industry, biomass gasification may eliminate the need to purchase electricity while reducing some of the industry's chemical use and improving waste management.
Cons: At present, the technology to produce electricity from biomass in large quantities is not economically viable; however, research is being done in many areas of biomass production, and this will likely change. Even though net CO2 emissions are zero, other pollutants such as SOx and NOx are released during combustion.

What is Biofuel?


What is biofuel?
Biofuels are transport fuels made from plant material and recycled elements of the food chain, and as such are considered renewable and sustainable in contrast to the majority of liquid and gas fuels we use today, which are fossil based with limited world reserves. Biofuels can be used in either pure form or blended with fossil fuels, in diesel powered vehicles and boats. There are two classes of biofuel: biodiesel and bioethanol.

Biodiesel
Biodiesel is produced through a process in which organically derived oils are combined with alcohol (ethanol or methanol) in the presence of a catalyst to form ethyl or methyl ester. The biomass-derived ethyl or methyl esters can be blended with conventional diesel fuel or used as a neat fuel (100% biodiesel). Biodiesel is derived from vegetable oils, for example rapeseed. It can replace diesel entirely or it can be mixed with it in different proportions for running diesel engines which require little or no modification. Biodiesel sold on UK forecourts is a blend of 5% biodiesel and 95% mineral diesel, and requires no engine modification. Biodiesel is better for the environment than petrol diesel since it is made from renewable resources and has lower emissions.

Bioethanol
Bioethanol and its derivative, ETBE, are oxygenated products, produced from a range of agricultural feedstocks, e.g. starch and sugar crops. It can be used in existing, slightly modified, petrol engines, although cold starting requires the addition of a small amount of a volatile fuel component - usually petrol. Vegetable ETBE is used as an additive to enhance the octane rating, as a replacement for the fossil oxygenate MTBE. (sharifah Norazira)

Friday, September 7, 2007

Reka bangunan jimat tenaga

Oleh Habibah Omar

PUTRAJAYA 28 Jun – Pembinaan bangunan baru kerajaan perlu dilengkapi dengan sistem penggunaan tenaga yang cekap bagi memastikan pembangunannya dapat mengurangkan kesan negatif terhadap alam sekitar.
Menteri Tenaga, Air dan Komunikasi, Datuk Seri Dr. Lim Keng Yaik berkata, untuk itu Jabatan Kerja Raya (JKR) dan agensi kerajaan yang berkaitan perlu menerapkan aspek tersebut dalam reka bentuk bangunan.
Katanya, ia selaras dengan pengumuman Perdana Menteri ketika membentangkan bajet tahun lalu agar bangunan kerajaan dapat mengurangkan penggunaan tenaga sebanyak 10 peratus.
“Setakat ini saya belum melihat sebarang usaha dijalankan untuk mencapai matlamat berkenaan (mengurangkan tenaga sebanyak 10 peratus).
“Saya harap jabatan kerajaan, JKR dan Putrajaya Holdings mempertimbangkan apa yang diperkatakan oleh Perdana Menteri pada bulan Oktober tahun lalu.
“Peranti penjimatan tenaga boleh dibeli dan ditambah kepada sistem di mana-mana bangunan untuk menjimatkan tenaga,” katanya kepada pemberita di sini, hari ini.
Beliau berkata demikian selepas Majlis Pecah Tanah Bangunan Suruhanjaya Tenaga di Presint 2 di sini hari ini.
Bangunan itu dijangka siap pada 2009 dengan menggunakan beberapa pendekatan cekap tenaga akan diambil, antara dengan mengoptimumkan arah bangunan, memaksimumkan pembauran cahaya siang, penggunaan lampu dengan kecekapan tinggi serta pemasangan sistem penyejuk cekap tenaga.
Mengulas lanjut, Keng Yaik berkata, ketika ini pihaknya sedang mengadakan audit tenaga ke atas tujuh bangunan kerajaan termasuk JKR, Unit Perancangan Ekonomi (EPU), Hospital Selayang serta Kem Tentera di Jalan Ipoh berhubung kecekapan tenaga.
Audit tenaga itu dikendalikan oleh Timbalan Ketua Setiausaha II kementerian berkenaan, Loo Took Gee.
Sementara itu, ketika ditanya sama ada beliau akan bertanding dalam pilihan raya umum akan datang, Keng Yaik memberitahu beliau tidak akan bertanding.
“Saya kena merancang untuk tenaga elektrik. Saya mempunyai 10 tahun untuk merancang. Saya merancang sekarang tapi pelaksanaan dalam 10 tahun akan datang.
“Mana ada masa, tapi saya tidak akan bertanding dalam pilihan raya umum akan datang,” katanya.
Sementara itu Took Gee berkata, audit tenaga itu dijangka siap pada September ini dan laporan mengenainya akan dibentangkan ke Kabinet untuk membolehkan bangunan-bangunan kerajaan dibina dengan menggunakan sistem penggunaan tenaga yang cekap.
“Kita akan cadangkan pada kerajaan supaya di masa depan bila bina bangunan, aspek penjimatan tenaga dapat dijalankan kerana selama ini ia tidak dipandang serius disebabkan kadar elektrik yang rendah,” katanya.

(post by Rosehanizar mohd Radzi)

Ruang kediaman bagaikan galeri elektrik

Oleh MOHD. KHUZAIRI ISMAIL

GAYA hidup moden seringkali dikaitkan dengan perkakasan dan kelengkapan rumah yang bukan hanya tinggi kualitinya, malah tampil menawan dari segi reka bentuknya.
Bukan sesuatu yang sukar juga untuk mencari kelengkapan rumah dengan ciri-ciri itu sementelah pelbagai inovasi dan penyelidikan dijalankan bagi menghasilkan peralatan elektrik yang menepati gaya hidup moden.

Salah satunya adalah rangkaian produk perkakasan rumah yang ditawarkan oleh syarikat yang terkenal dengan tagline Life‘s Good iaitu LG Electronics (LG).
LG tampil dengan peti sejuk dan mesin basuh bermotifkan corak bunga menarik yang pastinya membangkitkan seri kediaman pemiliknya.
Ia hadir dalam pilihan warna yang menawan antaranya merah, biru, perak, putih, merah jambu dan hitam sekali gus menggantikan kebiasaan warna perak mesin basuh dan peti sejuk ketika ini.

‘‘Bagi produk mesin basuh misalnya, ia didatangkan dengan kelebihan teknologi penjana stim atau wap yang tidak hanya berfungsi mencuci pakaian malah sehingga mengeringkannya dalam masa bekerja yang sama,’’ ujar beliau ketika ditemui di ibu pejabat LG di Kelana Jaya, Selangor, baru-baru ini.
Teknologi itu juga tambah Nikki membolehkan pengguna menjimatkan kira-kira 35 peratus penggunaan air dan 21 peratus tenaga elektrik dalam masa yang sama bekerja secara mesra alam terutamanya dari segi pelepasan air kumbahan yang sedikit.

Program Refresh mesin basuh itu barangkali menjadikannya lebih istimewa apabila ia mampu mengurangkan kesan renyuk pada kain dalam masa kira-kira 20 minit dan menjadikan pakaian seolah-olah baru diseterika.
Ia hadir dalam dua pilihan berat muatan iaitu 10 dan 12 kilogram namun mesin basuh dengan corak bunga untuk pasaran Malaysia hanya ditawarkan dalam warna merah dan perak dengan muatan 12 kilogram.
Turut menampilkan kelainan reka bentuk dalam kelasnya yang tersendiri ialah peti sejuk Side by Side LG yang sememangnya direka untuk menjadikan ruang kediaman seolah-olah sebuah pusat galeri.

Menggunakan teknologi percetakan kaca unik, corak motif bunga pada peti sejuk itu juga berjaya membangkitkan kesan khas tiga dimensi (3D) untuk sudut pandangan yang lebih jelas dan menarik.
Didatangkan dengan mini bar pada bahagian permukaan luarnya, ia boleh dibuka dengan semudah menekan dengan perlahan bahagian pintu luarnya dan ia boleh menampung sehingga 20 kilogram bebanan.
Turut mencuri tumpuan ialah ruangan penghasilan ais yang mana pengguna hanya perlu memasukkan air secara terus ke dalam ruang yang disediakan dan ais juga boleh didapati pada bahagian permukaan pintu yang dibina bersebelah mini bar.
Sama seperti model Side by Side, beberapa model terbaru peti sejuk LG yang lain turut hadir dengan inovasi reka bentuk dan teknologi terkini antaranya binaan pepenjuru yang tersembunyi.

Lebarnya juga kira-kira lima inci lebih kecil berbanding peti ais biasa bersaiz 40 inci lebar sekali gus memudahkan ia ditempatkan di mana-mana sudut ruang dapur malah, enjinnya juga beroperasi secara senyap.
Setiap ruang yang dibina pada bahagian dalaman peti ais itu juga didatangkan dengan kelebihan tersendiri sebagai contoh dua bahagian laci paling bawah dengan kemampuan dwi fungsi sama ada untuk menyimpan sayur-sayuran atau daging.
Kesemua model terbaru mesin basuh dan peti ais LG itu yang akan berada di pasaran selewat-lewatnya September ini dijual pada harga di antara RM4,000 hingga RM7,000.
Melengkapkan gaya hidup moden daripada LG ialah rangkaian penghawa dingin terbaru mereka yang dipertingkatkan dengan teknologi terkini iaitu sistem Air Purifying dan fungsi Auto Clean.

Apa yang mengagumkan daripada teknologi terbaru ini, ia mampu mengurangkan penembusan virus selesema burung sehingga 99.9 peratus sekali gus muncul penghawa dingin pertama di dunia dengan kelebihan tersebut.
Sistem terbaru Neo Plasma Plus Air Purifying itu dilengkapi dengan multi penapis dan fungsi pembersihan sendiri yang dibangunkan kepada dua model terbaru mereka iaitu siri Art Cool dan Neo Plasma Plus.
Ia turut dibangunkan dengan fungsi pembersihan automatik yang akan mengeringkan haba pertukaran yang basah sekali gus menghalang habuk dan bakteria tersebar ke udara.
Rangkaian produk terbaru pendingin hawa LG ini sudah berada di pasaran dan dijual pada harga di antara RM1,399 hingga RM3,199.

Maklumat lanjut mengenai rangkaian produk perkakasan rumah yang ditawarkan oleh LG boleh didapati dengan menghubungi talian 03-7491 2888 atau layari laman web www.lge.com.my

(post by Rosehanizar Mohd Radzi & Noor Sakinah)

Wednesday, September 5, 2007

Malaysia sasar sejuta tan biodiesel

BANGI: Malaysia mensasarkan pengeluaran satu juta tan biodiesel berasas sawit pada 2007 ini dengan sebahagian besar produk itu akan dieksport ke luar negara. Pada 2006 Malaysia mengeluarkan kira-kira 400,000 tan biodiesel.

Setiausaha Parlimen, Kementerian Perusahaan Perladangan dan Komoditi, Datuk Dr S Vijayaratnam, berkata sasaran itu berdasarkan kepada perkembangan dan anggaran pengeluaran bahan bakar bio itu menerusi lima kilang yang sudah dan akan beroperasi pada masa ini dan tidak lama lagi.” Tiga daripada kilang itu adalah usaha sama dengan Lembaga Minyak Sawit Malaysia (MPOB) iaitu Golden Hope Plantations Bhd, Kumpulan Fima Bhd dan Carotino Sdn Bhd. Manakala dua lagi adalah Ganz Biofuel Sdn Bhd dan Vance Bioenergy Sdn Bhd. Vijayaratnam berkata, produk itu dijangka dieksport ke Eropah, China, Jepun, Korea dan Australia kerana permintaan antarabangsa ke atas biodiesel sangat tinggi terutama di Eropah dan Amerika Syarikat. “Sehingga November 2006, kerajaan sudah memberi kelulusan lesen kepada 75 syarikat tempatan dan antarabangsa untuk membina kilang dan mengeluarkan biodiesel yang membabitkan pelaburan bernilai RM7.01 bilion,” katanya pada sidang media selepas merasmikan Persidangan Biofuel Antarabangsa dan Tenaga Alternatif anjuran Institut Strategi dan Kepimpinan Asia (asli) di Kuala Lumpur baru-baru ini.

Beliau mewakili Timbalan Perdana Menteri, Datuk Seri Najib Razak. Turut hadir Pengerusi Persatuan Minyak Sawit Malaysia (MPOA), Datuk Sabri Ahmad yang dilantik mulai 1 Januari lalu dan Ketua Eksekutif Asli, Datuk Dr Michael Yeoh. Daripada jumlah pelaburan itu, kata Vijayaratnam, RM4.87 bilion atau 69 peratus adalah pelaburan tempatan, manakala baki RM2.14 bilion (21 peratus) pelaburan luar negara terutama dari Australia, Singapura, India, Itali, Amerika Syarikat dan Jepun.Terdahulu, Najib dalam ucapan yang dibaca oleh Vijayaratnam berkata, produk sawit menyumbang RM27 bilion kepada eksport negara dengan 80 peratus daripadanya digunakan sebagai pengeluaran produk makanan manakala bakinya digunakan untuk pengeluaran produk bukan makanan terutamanya dalam industri berkaitan oleokimia.“Kerajaan juga membayangkan Malaysia akan mengurangkan import petroleum diesel sebanyak 500,000 tan setahun sejajar dengan pengembangan pengeluaran produk biodiesel dalam negara.“Kerajaan meluluskan Polisi Biofuel Nasional dengan tiga matlamat utama iaitu mengeluar dan mengguna biofuel untuk sektor pengangkutan dan industri, pengeluaran biofuel untuk eksport dan pengkomersilan teknologi biofuel,” katanya. – mjohari@mpob.gov.my

by nurul hidayah sulong